Constraining the escape of ionizing photons from z > 6 galaxies with JWST

Erik Zackrisson Uppsala University, Sweden Christian Binggeli, Kristian Finlator, Nick Gnedin, Akio K. Inoue, Hannes Jensen, Genoveva Micheva, Jan-Pieter Paardekooper, Ikkoh Shimizu

Punchline

New way to study the role of galaxies in the reionization of the Universe: JWST/NIRSpec measurements of the escape of ionizing radiation from galaxies at redshift $z \approx 6-9$ Zackrisson et al. 2013, ApJ, 777, 39

What caused cosmic reionization?

Studies of the intergalactic medium (e.g. $Ly\alpha$, CMBR) can reveal *when* reionization happened, but where did the ionizing photons come from?

Star-forming galaxies at z > 6 are the prime suspects, but how do we prove that they did it?

S.G. Djorgovski et al. & Digital Media Center, Caltech

CMBR

Reionization $(z \approx 6-14)$

Requirements for galaxydominated reionization

 Lots of star-forming galaxies at redshifts z > 6

2. Escape of ionizing photons (Lyman continuum) from galaxies into the IGM

LyC leakage – direct detections

Serious problem: At z > 4-5, the IGM opacity prevents direct detection of escaping Lyman continuum (Inoue & Iwata 2008, Inoue+14)

Indirect signatures of LyC leakage

Zackrisson, Inoue & Jensen 2013, ApJ, 777, 39

How does this work?

Young stars 🔍

Lyman continuum photons from young stars captured by gas → Nebular emission -

If some of the LyC photons escape without ionzing the ISM \rightarrow Less nebular emission!

Stellar and nebular SEDs

Pop I, II, III stars + EMP stars
Nebular emission (Cloudy) + dust
Rest-frame SEDs (far-UV to near-IR)
HST/Spitzer/JWST fluxes @ z=0-15

A spectral synthesis model for the first galaxies

ggdrasi code

Model grids available at: <u>www.astro.uu.se/~ez</u>

Zackrisson et al. 2011, ApJ, 740, 13

Simple diagnostics: UV slope & H β

Zackrisson, Inoue & Jensen 2013, ApJ, 777, 39

How well can we measure f_{esc}?

LYman Continuum ANalysis project: Galaxy simulations + Yggdrasil + observational errors → Mock spectra of high-z galaxies with Lyman continuum leakage

Simulations suites: CROC (Gnedin 2014) FiBY (Paardekooper et al. 2015) Finlator et al. (2013) Shimizu et al. (2014)

Highly realistic SEDs for high-redshift galaxies publicly available: www.astro.uu.se/~ez/lycan/lycan.html

Example of mock SED from LYCAN

Diagnostics based on realistic SEDs

SED analysis using machine learning algorithms

3h NIRSpec, R=100 spectra of $m_{AB} \approx 26-27$ galaxies at z=7

Ongoing work: Synergies with the Square Kilometer Array

Time Since The Big Bang

Ionized Neutral SKA can map the sizes of these bubbles and telescopes like JWST can probe the galaxies inside \rightarrow New constraints on f_{esc} and cosmic reionization Credit: NASA/STScl

 13.7 Billion Years Present ~ 700 Million Years End of Reionization ~ 400 Million Years First Stars

0 Years Big Bang

Lensed galaxies make the best targets

In <10 h, NIRSpec can get a sufficiently good spectrum for a $z \approx 7$ galaxy with stellar mass ~10⁷ Msolar (M₁₅₀₀ \approx -16) if the gravitational magnification is $\mu \approx 30$

Summary

- The escape of ionizing photons from galaxies at z>6 is crucial for galaxy-dominated reionization
- JWST/NIRSpec can constrain the escape of ionizing radiation from galaxies up to $z \approx 9$
- Project can go piggy-back on any NIRSpec survey of z>6 galaxies, but lensed galaxies make the best targets
- Publicly available model SEDs for high-z galaxies: www.astro.uu.se/~ez/lycan/lycan.html

