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Introduction to Numerical Hydrodynamics

1. The Equations of Fluid Dynamics 

1.1  Basic Concepts of Fluid Mechanics 



Dynamical Theories

General characteristics of dynamical theories
 

   -  state of the system at a given instant: described by a set of variables
   -  evolution of the system/variables with time: described by a set of equations
      giving time derivatives of the variables

Levels of dynamical theories for fluids

system    description of state    dynamical equations

N classical particles    (x1 , ..., xN ,v1 , ...,vN)    Newton's laws
distribution function     f(x,v,t)    Boltzmann equation 
continuum model    (x), T(x), v(x)    hydrodynamic equations  

 



Fluid Dynamics: Basic Concepts

consider a typical fluid ...



Fluid Dynamics: Basic Concepts

... and define a fluid element 



Fluid Dynamics: Basic Concepts

Definition of fluid element:
 

   A region over which we can define local variables (density, temperature, etc.) 
   The size of this region is assumed to be such that it is
 

   (i)  small enough that we can ignore systematic variations across it for any 
         variable q we are interested in: 
 

                                              l
 region

 <<  l
 scale

  q /q   

   (ii)  large enough to contain sufficient particles to ignore fluctuations due to
          the finite number of particles (discreteness noise):
 

                                              n l 3

region
  >>  1

   In addition, collisional fluids must satisfy:
 

   (iii)                                     l
 region

 >>  mean free path of particles

  

 



Mean Free Path - Examples 

Mean Free Path

  - depends on number density and cross section
  - elastic scattering cross section of neutral atoms: 10 - 15 cm2

Examples 

     gas in density MFP size
[cm-3] [cm] [cm]

     ________________________________________________
 
     typical room 1019 10 - 4 10 3

     HI region (ISM) 10 10 14 10 19



Fluid Dynamics: Basic Concepts

  -  frequent collisions, small mean free path compared to the characteristic  
     length scales of the system → coherent motion of particles
  -  definition of fluid element: mean flow velocity (bulk velocity)
  -  particle velocity = mean flow velocity + random velocity component



Fluid Dynamics: Basic Concepts

coherent motion of particles 



Fluid Dynamics: Basic Concepts

coherent motion of particles 



Fluid Dynamics: Basic Concepts

coherent motion of particles 



Fluid Dynamics: Basic Concepts

v
ρ, T

  The fluid is described by 
local macroscopic variables 
(e.g., density, temperature, 
bulk velocity)                           
 

  The dynamics of the fluid is 
governed by internal forces 
(e.g. pressure gradients) and 
external forces (e.g. gravity)     
 

  The changes of macroscopic 
properties in a fluid element 
are described by conservation 
laws    

ρ, T

v



Introduction to Numerical Hydrodynamics

1. The Equations of Fluid Dynamics 

1.2  Fluid Dynamics: Conservation Laws 



Fluid Dynamics: The Conservation Laws 

Mass conservation: 



Fluid Dynamics: The Conservation Laws 

Mass conservation:                                       divergence theorem
 

rate of change of mass in V = mass flux across the surface

rewrite as:

... but the volume V is completely arbitrary

             

equation of continuity

∫V [ ∂

∂ t
 ∇⋅u] dV = 0

∂

∂ t
 ∇⋅u = 0

d
dt

∫V
 dV = −∮A

u⋅n dA = −∫V
∇⋅u dV



Fluid Dynamics: The Conservation Laws 

Momentum conservation:                           
 

rate of change of momentum in V = 
                              momentum flux across the surface (fluid flow)
                                                         - effect of pressure on surface
                                                                            +  effect of forces

applying divergence theorem (surface to volume integrals):

             

equation of motion

d
dt

∫V
ui dV = −∮A

ui u j n j dA − ∮A
P ij n j dA ∫V

ai dV

∂

∂ t
ui  

∂

∂ x j
ui u j  = −

∂ P
∂ x i

 ai



Fluid Dynamics: The Conservation Laws 

Energy conservation:                           
 

rate of change of energy in V = 
                            energy flux across the surface (due to fluid flow)
                                                         - work done by pressure 
                                                                    +  work done by  forces

applying divergence theorem (surface to volume integrals):

         

energy equation

d
dt
∫V 1 

2
u2 edV =−∮A 1 

2
u2 eu⋅n dA−∮A

ui P ij n j dA∫V
u⋅a dV

∂

∂ t 
1 
2 

u2  e  ∇⋅ 1 
2 

u2 eu = − ∇⋅ P u   u⋅a



Fluid Dynamics: The Conservation Laws 

 

general form of conservation laws:

                                                        
         

∂

∂ t 
1 
2 

u2  e  ∇⋅ 1 
2 

u2 eu = − ∇⋅ P u   u⋅a

∂

∂ t
ui  

∂

∂ x j
ui u j  = −

∂ P
∂ x i

 ai

∂

∂ t
 ∇⋅u = 0

∂

∂ t
density of quantity   ∇⋅  flux of quantity  = sources−sinks



Fluid Dynamics: The Conservation Laws 

 

... and what about external forces ?  

∂

∂ t 
1
2
u2  e  ∇⋅ 1

2
u2eu = − ∇⋅ P u   u⋅a

∂

∂ t
ui  

∂

∂ x j
ui u j  = −

∂ P
∂ x i

 ai

∂

∂ t
 ∇⋅u = 0

a=
F
m



Fluid Dynamics: External Forces

Gravitation: 

a = g      ...  acceleration  

where g is given by  
Poisson's equation

  g =  - 4  G 



Fluid Dynamics: External Forces

Radiation pressure: 

f
rad

  =  / c  ∫ k
n  

F
n 
 dn

f
rad  

    ...  force per volume, 

added to equation 
   of motion 

u  f
rad  

... work done by 

radiation pressure, 

   added to energy 
   equation



Fluid Dynamics: The Conservation Laws 

 

... including: gravity    
radiation pressure
heating & cooling by radiation

∂

∂ t  1
2
u2  e  ∇⋅ 1

2
u2eu = − ∇⋅ P u   u⋅g

 u⋅f rad −

∂

∂ t ui  
∂

∂ x j
ui u j  = −

∂ P
∂ x i

  g i  f rad
i

∂

∂ t
 ∇⋅u = 0



Fluid Dynamics: Limit Cases of Energy Transport 

 

Barotropic equation of state:

Examples:    - ideal gas:
 

* isothermal case     
 

* adiabatic case

Efficient radiative heating and cooling:
( radiative equilibrium)

∂

∂ t
ui  

∂

∂ x j
ui u j  = −

∂ P
∂ x i

 ai

∂

∂ t
 ∇⋅u = 0

P = P 

P = K 


P ∝ T

P ∝ 

− = 0  T  P  ,T 



Introduction to Numerical Hydrodynamics

1. The Equations of Fluid Dynamics 

1.3  Acoustic Waves and Shock Waves 



Fluid Dynamics: The Conservation Laws 

 

general form of conservation laws:

                                                        
         

∂

∂ t 
1 
2 

u2  e  ∇⋅ 1 
2 

u2 eu = − ∇⋅ P u   u⋅a

∂

∂ t
ui  

∂

∂ x j
ui u j  = −

∂ P
∂ x i

 ai

∂

∂ t
 ∇⋅u = 0

∂

∂ t
density of quantity   ∇⋅  flux of quantity  = sources−sinks



Waves: Small-Amplitude Sound Waves 

replacing energy equation:

1D, no external forces:

∂

∂ t
ui  

∂

∂ x j
ui u j  = −

∂ P
∂ x i

 ai

∂

∂ t
 ∇⋅u = 0

P=K 

∂

∂ t


∂

∂ x
u = 0

∂

∂ t
u  

∂

∂ x
u u  = −

∂ P
∂ x



Waves: Small-Amplitude Sound Waves 

small-amplitude disturbances 
in gas which initially is at rest  
with constant pressure and density

replacing energy equation:

1D, no external forces:

P=K 

∂

∂ t


∂

∂ x
u = 0

∂
∂ t

u  
∂
∂ x

u u  = −
∂ P
∂ x

P=P0P1 x , t 
=01x , t 
u= u1 x , t 



Waves: Small-Amplitude Sound Waves 

small-amplitude disturbances 
in gas which initially is at rest  
with constant pressure and density

insert into equations & linearise:

P1= K 0
−11=

P0

0

1

∂1

∂ t
 0

∂u1

∂ x
= 0

0

∂ u1

∂ t
= −

∂ P1

∂ x

P=P0P1 x , t 
=01x , t 
u= u1 x , t 



Waves: Small-Amplitude Sound Waves 

small-amplitude disturbances 
in gas which initially is at rest  
with constant pressure and density

insert into equations & linearise:

use sound speed:

P1= K 0
−11=

P0

0

1

∂1

∂ t
 0

∂u1

∂ x
= 0

0

∂ u1

∂ t
 a0

2 ∂1

∂ x
= 0

P=P0P1 x , t 
=01x , t 
u= u1 x , t 


P0

0

= a0
2



Waves: Small-Amplitude Sound Waves 

  homogeneous wave equation:

      general solution:

waves propagating with sound speed a
0
 

∂
2
1

∂ t2
− a0

2 ∂
2
1

∂ x2
= 0

1 = f x−a0 t   g xa0 t 



Waves: Steepening of Acoustic Waves 

                                        Waves



Waves: Steepening of Acoustic Waves 

                                        Waves



                                        Waves

Waves: Structure of Shock Waves 



                                        Waves

Waves: Structure of Shock Waves 



Waves: Shocks and Conservation Laws

1D, no external forces,  
stationary flow:

jump conditions:

       specific enthalpy

∂

∂ t 
1
2
u2  e 

∂

∂ x 
1
2

u2eu = −
∂

∂ x
 P u 

∂
∂ t

u  
∂
∂ x

u u  = −
∂ P
∂ x

∂

∂ t


∂

∂ x
u = 0

2 u2 = 1 u1

2 u2
2

 P2 = 1 u1
2

 P1

1
2

u2
2

 h2 =
1
2

u1
2

 h1h ≡ e
P


=


−1
P




Waves: Shocks and Conservation Laws

1D, no external forces,  
stationary flow:

jump conditions:

       specific enthalpy

∂

∂ t 
1
2
u2  e 

∂

∂ x 
1
2

u2eu = −
∂

∂ x
 P u 

∂
∂ t

u  
∂
∂ x

u u  = −
∂ P
∂ x

∂

∂ t


∂

∂ x
u = 0

2 u2 = 1 u1

2 u2
2

 P2 = 1 u1
2

 P1

1
2

u2
2

 h2 =
1
2

u1
2

 h1h ≡ e
P


=


−1
P




Waves: Shocks and Conservation Laws

1D, no external forces,  
stationary flow:

jump conditions:

       specific enthalpy

∂

∂ t 
1
2
u2  e 

∂

∂ x 
1
2

u2eu 
∂

∂ x
 P u = 0

∂

∂ t
u  

∂

∂ x
u u  

∂ P
∂ x

= 0

∂

∂ t


∂

∂ x
u = 0

2 u2 = 1 u1

2 u2
2

 P2 = 1 u1
2

 P1

1
2

u2
2

 h2 =
1
2

u1
2

 h1h ≡ e
P


=


−1
P




Waves: Shocks and Conservation Laws

1D, no external forces,  
stationary flow:

jump conditions:

       specific enthalpy

∂

∂ t  1
2
u2  e 

∂

∂ x  1
2

u2e
P
  u = 0

∂

∂ t
u  

∂

∂ x
u uP  = 0

∂

∂ t


∂

∂ x
u = 0

2 u2 = 1 u1

2 u2
2

 P2 = 1 u1
2

 P1

1
2

u2
2

 h2 =
1
2

u1
2

 h1h ≡ e
P


=


−1
P




Adiabatic Shocks: Jump Conditions 

1D, no external forces,  
stationary flow:

jump conditions:

       specific enthalpy

∂

∂ t 
1
2
u2  e 

∂

∂ x 
1
2

u2eu = −
∂

∂ x
 P u 

∂
∂ t

u  
∂
∂ x

u u  = −
∂ P
∂ x

∂

∂ t


∂

∂ x
u = 0

2 u2 = 1 u1

2 u2
2

 P2 = 1 u1
2

 P1

1
2

u2
2

 h2 =
1
2

u1
2

 h1h ≡ e
P


=


−1
P




Waves: Shocks and Conservation Laws

1D, no external forces,  
stationary flow:

jump conditions:

       specific enthalpy

∂

∂ t  1 
2 

u2  e 
∂

∂ x 1 
2 

u2 e
P
  u = 0

∂

∂ t
u  

∂

∂ x
u uP  = 0

∂

∂ t


∂

∂ x
u = 0

2 u2 = 1 u1

2 u2
2 

 P2 = 1 u1
2 

 P1

1 
2 

u2
2 

 h2 =
1 
2 

u1
2 

 h1h ≡ e
P


=


−1
P


energy conserving
(no radiation)



Waves: Shocks and Conservation Laws

1D, no external forces,  
stationary flow:

jump conditions:

∂

∂ x
T  = 0

∂

∂ t
u  

∂

∂ x
u uP  = 0

∂

∂ t


∂

∂ x
u = 0

2 u2 = 1 u1

2 u2
2 

 P2 = 1 u1
2 

 P1

T 2 = T 1

isothermal
(efficient radiative cooling)



Strong Shocks: Jump Conditions

adiabatic isothermal

for Mach number M1    
 

density jump is limited density jump is unlimited

Radiative cooling increases the compression ratio!

2

1

=
u1

u2


1
−1

2 u2
2 

 P2 = 1 u1
2 

 P1

1 
2 

u2
2 

 h2 =
1 
2 

u1
2 

 h1h ≡ e
P


=


−1
P


2

1

=
u1

u2

 M 1
2



Introduction to Numerical Hydrodynamics

1. The Equations of Fluid Dynamics 

1.4  Basic Mathematical and Numerical Considerations 



Equations of Fluid Dynamics: Euler Equations

∂

∂ t 
1 
2 

u2  e  ∇⋅ 1 
2 

u2 eu = − ∇⋅ P u   u⋅a

∂

∂ t
ui  

∂

∂ x j
ui u j  = −

∂ P
∂ x i

 ai

∂

∂ t
 ∇⋅u = 0

 

based on simplifying assumptions:
 

  -  no external forces (e.g. gravity, radiation pressure)
  -  no heating or cooling by radiation or heat conduction 
  -  no viscosity (friction at microscopic level, shear)

                                                        
         



Equations of Fluid Dynamics: Euler Equations

 

based on simplifying assumptions:
 

  -  no external forces (e.g. gravity, radiation pressure)
  -  no heating or cooling by radiation or heat conduction 
  -  no viscosity (friction at microscopic level, shear)

                                                        
         

∂

∂ t 
1 
2 

u2  e  ∇⋅ 1 
2 

u2 eP u = 0

∂
∂ t

ui  
∂
∂ x j

ui u j  P ij = 0 

∂

∂ t
 ∇⋅u = 0



Equations of Fluid Dynamics: Euler Equations

 

... can be re-written in the following form:
 

                                      where

                                                        
         

∂

∂ t 
1 
2 

u2  e  ∇⋅ 1 
2 

u2 eP u = 0

∂
∂ t

ui  
∂
∂ x j

ui u j  P ij = 0 

∂

∂ t
 ∇⋅u = 0

∂

∂ t
q  f q = 0 q =   , ui ,

1 
2

u2e 



Euler Equations ... A Recipe for a Solution?

The equations describe the time-evolution of q
 

                                      where

 

So:  1. define a spatial grid
       2. specify initial conditions for q at t=0 for all grid points 
           and suitable boundary conditions
       3. compute ui, e and P
       4. compute right-hand side (spatial derivatives)
       5. take a small step in time and get a small change in q 
       6. update q 
       7. restart at 3.
 

But: there are many ways how this can go wrong, as we will see ... 
         

∂

∂ t
q = − f q q =   , ui ,

1 
2

u2e 
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