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Introduction to Numerical Hydrodynamics

1. The Equations of Fluid Dynamics

1.1 Basic Concepts of Fluid Mechanics



Dynamical Theories

General characteristics of dynamical theories

- state of the system at a given instant: described by a set of variables
- evolution of the system/variables with time: described by a set of equations
giving time derivatives of the variables

Levels of dynamical theories for fluids

system description of state dynamical equations

N classical particles | (X7, ey X7, V75 eeesVN) Newton's laws
distribution function | f(x,v,?) Boltzmann equation
continuum model ox), T(x), v(x) hydrodynamic equations




Fluid Dynamics: Basic Concepts

consider a typical fluid ...




Fluid Dynamics: Basic Concepts

... and define a fluid element




Fluid Dynamics: Basic Concepts

Definition of fluid element:

A region over which we can define local variables (density, temperature, etc.)
The size of this region is assumed to be such that it is

(1) small enough that we can ignore systematic variations across it for any
variable q we are interested in:

| <<l ~q/lvql

region scale

(i1) large enough to contain sufficient particles to ignore fluctuations due to
the finite number of particles (discreteness noise):

nl’ >> ]

region

In addition, collisional fluids must satisfy:

(iii) |  >> mean free path of particles

region




Mean Free Path - Examples

Mean Free Path

- depends on number density and cross section
- elastic scattering cross section of neutral atoms: 10" cm®

Examples
gas in density MFP size
[cm™] [cm] [cm]
typical room 10" 10°* 10°

HI region (ISM) 10 10" 10"



Fluid Dynamics: Basic Concepts

- frequent collisions, small mean free path compared to the characteristic
length scales of the system — coherent motion of particles

- definition of fluid element: mean flow velocity (bulk velocity)

- particle velocity = mean flow velocity + random velocity component

random-walk trajectory




Fluid Dynamics: Basic Concepts

coherent motion of particles




Fluid Dynamics: Basic Concepts

coherent motion of particles




Fluid Dynamics: Basic Concepts

coherent motion of particles




Fluid Dynamics: Basic Concepts

» The fluid 1s described by
local macroscopic variables
(e.g., density, temperature,
bulk velocity)

» The dynamics of the fluid 1s
governed by internal forces
(e.g. pressure gradients) and
external forces (e.g. gravity)

» The changes of macroscopic
, T properties in a fluid element
— T are described by conservation

— ﬁ:\\\— laws
N




Introduction to Numerical Hydrodynamics

1. The Equations of Fluid Dynamics

1.2 Fluid Dynamics: Conservation Laws



Fluid Dynamics: The Conservation Laws

Mass conservation:




Fluid Dynamics: The Conservation Laws

Mass conservation: divergence theorem

d .
Lo av = §,ouh s 2], Vipu]

rate of change of mass in V = mass flux across the surface

rewrite as: K p |
— + Vi{pu)| dV =0
fV-at (p )-
... but the volume V 1s completely arbitrary
0
= 8_‘; + V°(pu) =0

equation of continuity



Fluid Dynamics: The Conservation Laws

Momentum conservation:

iy

f pu, dV = ¢ ouu.n, di — fﬁAPSljf@j d/ +pral. dV

rate of change of momentum in V =
momentum flux across the surface (fluid flow)
- effect of pressure on surface
+ effect of forces

applying divergence theorem (surface to volume integrals):

0 0 0P
= t( )+E(pu):—a+pa

J
equation of motion



Fluid Dynamics: The Conservation Laws

Energy conservation:

1

2 pe) dV = {ﬁ
rate of change of energy in V =

energy flux across the surface (due to fluid flow)

- work done by pressure
+ work done by forces

d

L undA@ﬁuPéindAJrf pua dV

pu +pe

applying divergence theorem (surface to volume integrals):

o1
+ ope| +
at(z ol + pe| + V-

(2 pu’ +pe)u ) = — V(Pu|] + pua

energy equation




Fluid Dynamics: The Conservation Laws

0p ~
o V-(pu| = 0
0 0 0P
or Pl * g low) == 5o+ pa
0 1—pu2 + pe| + V- (l—pu2+pe)u = — V{Pu) + pua
ot\2 2

general form of conservation laws:

% (densityof quantity) + V- | flux of quantity| = sources —sinks



Fluid Dynamics: The Conservation Laws

0p ~
- + Vi{pu| =0
0 0 0P
Clou) + =—(puu)=- < + pa
[0 aXj(pulu,) o T
0 lpu2 + pe| + V- (lpu2+pe)u = V{Pu| + pua
0t \2 2

... and what about external forces ?




Fluid Dynamics: External Forces

Gravitation:
a=g .. acceleration

where g 1s given by
Poisson's equation

V.g=-4n1Gp




Fluid Dynamics: External Forces

Radiation pressure:

fmd = p/c /KVFV dv

f . force per volume,
added to equation
of motion

u-f work done by

vad *"

radiation pressure,

added to energy
equation




Fluid Dynamics: The Conservation Laws

0p
— 4+ . —
o+ Viou
0 0 0P i
E(P”i) t a_xj(p”i”j) T a_xl 08t S
9L+ pe| + V{(Lput+peul = Vi(Pul + pug
ot |2 2
-|_° rad +r_A

... Including: gravity
radiation pressure
heating & cooling by radiation




Fluid Dynamics: Limit Cases of Energy Transport

0p
— + V:{pu) =0
-+ Velou
0 0 0P
—lpu.| + —l\puu,] = — — + pa,
at(p l) ax](p l ]) axl p l
Barotropic equation of state: P=7r (p)
Examples: - ideal gas: Popl
* isothermal case P« op
* adiabatic case P = pr

Efficient radiative heating and cooling: [-A =0 - T - P(p,T)
(— radiative equilibrium)




Introduction to Numerical Hydrodynamics

1. The Equations of Fluid Dynamics

1.3 Acoustic Waves and Shock Waves



Fluid Dynamics: The Conservation Laws

0p ~
o V-(pu| = 0
0 0 0P
or Pl * g low) == 5o+ pa
0 1—pu2 + pe| + V- (l—pu2+pe)u = — V{Pu) + pua
ot\2 2

general form of conservation laws:

% (densityof quantity) + V- | flux of quantity| = sources —sinks



Waves: Small-Amplitude Sound Waves

% + V-{pu) = 0
wiloul + gloun) == 55+ va
replacing energy equation: P=Kp’
1D, no external forces: 5
o o
ol + low] = - 27




Waves: Small-Amplitude Sound Waves

small-amplitude disturbances P=P,+P, ( X, t)

in gas which 1nitially 1s at rest _

with constant pressure and density P=PTPy (X’ t)
u= u(x,1t)

replacing energy equation: P=Kp’

1D, no external forces:

0p | 0 ~
E-I——x(pu)—o



Waves: Small-Amplitude Sound Waves

small-amplitude disturbances P=P,+P, ( X, t)
in gas which 1nitially 1s at rest _
with constant pressure and density P=PTPy (X’ t)
u= u(x,1t)
insert into equations & linearise:
_ -1 P,
Pi=yKp, p=y—p,
Po
0p, . ou,
or ' Pox -
du, 0P,

DOE 0Xx



Waves: Small-Amplitude Sound Waves

small-amplitude disturbances P=P+P, ( X, t)
in gas which 1nitially 1s at rest _
with constant pressure and density P=PTPy (X’ t)
u= u(x,1t)
_ -1 Py
Pi=yKpy pi=y—p
Po
0p, . ou, -
or ' Pox
P
use sound speed: (%ll +og 0 P = y 0

pOE 05y 0,



Waves: Small-Amplitude Sound Waves

il i
— homogeneous wave equation: PL_ Clé —pzl = ()
0x
oy = fla=ayt) + glatay)

waves propagating with sound speed a_

general solution:

— N\~ = —\_—

In the absence of dissipation and spatial inhomogeneities (or dispersion), the
waveform of a disturbance governed by a linear wave equation maintains its size
and shape forever, apart from propagation at a constant wave speed.




Waves: Steepening of Acoustic Waves

/VI—L/, unphysical density profile

A B LC
density profile at t =0

An acoustic wave of finite amplitude, even if it starts with a perfect sinusoidal

shape and propagates in an undisturbed medium of exactly uniform properties,
would inevitably steepen in its waveform.




Waves: Steepening of Acoustic Waves

density p — po

shock

The tendency for nonlinearities to steepen the wave profile, which would
produce multiple values for fluid properties such as gas density and velocity,
must be eventually offset by the onset of strong viscous forces. The balance of
the viscous forces and the steepening tendency mediates a shock, which is
approximated in ideal fluid flow as a discontinuous jump of gas properties
across the front.



Waves: Structure of Shock Waves

P;
P2 U1
downstream upstream
U2 P1
Py

Across a viscous shock, the pressure and density increase and the velocity
decreases as the gas flows from the upstream state to the downstream state.
The transition is made in a characteristic distance Az that equals a few mean
free paths ¢ for the elastic scattering of the gas particles.



Waves: Structure of Shock Waves

P

P2 U1
e shock “jump” if £ < L

U9 P1

On macroscopic scales, shock transitions may be approximated as single
discontinuous jumps.




Waves: Shocks and Conservation Laws

dp 0
1D. no external forces _
9 _— _|_ R —
ot 8x(pu)
0 0 0P
il + = - _ 2
az(p”) ax(p””) o
8 1 p) 8 1 2 8
—| = + + —| (= + = — —|P
81(2pu Pe 0x (zpu pe)u) 8x( u)




Waves: Shocks and Conservation Laws

1D, no external forces,
stationary flow:

) =

0x

9 fous) = - &£
0x 0x



Waves: Shocks and Conservation Laws

1D, no external forces, 8_( pu) _
stationary flow: 0x
0 0P
8—x(puu) + e 0
o[, 1 0
—|(=pu '+ + —|Pu| =
ax((zp” pejul + ~—[Pul = 0




Waves: Shocks and Conservation Laws

ID,.no external forces, 8_( pu) _
stationary flow: 0x
g—x(pourP) = ()
g_x %u2+e+§ pul = 0
jump conditions: pU, = Pl

) )
specific enthalpy pyuy + Py = pyuy + P,

l l
hEe+£=LP —u, + h, = —u + b

D y—lg 2 2




Adiabatic Shocks: Jump Conditions

From these relations one can obtain expressions for the ratios of upstream to downstream
quantities in terms of the upstream Mach number M, = u;/a,, where a®> = vP/p. The
quantity M; is known as the Mach number of the shock. For a perfect gas we find:

P2 _ (v + 1) M} oy
n D+ -DME=1)  u (75)
P, (v+D)+29(MF 1)

P (r+1) (76)
T _ (v + D+ 2y - D)y +1) + (v — D(ME - 1)] -
h (v + 1)2M7

Notice that P, > Py, py > py, and T, > T if M; > 1 (supersonic upstream) with equality
if My = 1 (no shock at all). In the limit of a very strong shock, M; — oo, the density
jump is bounded by a finite value (y+1)/(y — 1), which equals 4 if 7 = 5/3. In the same
limit, the pressure and temperature jumps have no bound. In any case the deceleration of
a gas from supersonic to subsonic speeds in a shock results in compression and heating.



Waves: Shocks and Conservation Laws

1D, no external forces, a—(pu) _
stationary flow: 0x
0
a(pourP) = )
j d (1 P
™ S| vet) | <o
0x||2 0
jump conditions: Py Uy = Pyl
2 2
specific enthalpy pyuy + Py = pyup + P
P Yy P 1 ]

h =et— = )

p y-1lp 2




Waves: Shocks and Conservation Laws

1D, no external forces, a—(p u) — 0
stationary flow: 0x
0
—lpuut+P| =0
-+~ lpuu+P)
isothermal 8_(]*) —
(efficient radiative cooling) 0x
jump conditions: Py Uy = Pyl

) )
pyuy + Py =puy + P




Strong Shocks: Jump Conditions

adiabatic 1sothermal
U +1 U
I N A L N VE
P U, y-1 Py U,

for Mach number M| —
density jump 1s limited density jump 1s unlimited

Radiative cooling increases the compression ratio!



Introduction to Numerical Hydrodynamics

1. The Equations of Fluid Dynamics

1.4 Basic Mathematical and Numerical Considerations



Equations of Fluid Dynamics: Euler Equations

0p ~
- + Vi{pu| =0
0 0 0P
i Pl * 5o = = o7
¢ 1—pu2 + pe| + V- (l—pu2+pe)u = - V/(Pu
0t\2 2

based on simplifying assumptions:

- no external forces (e.g. gravity, radiation pressure)
- no heating or cooling by radiation or heat conduction

- no viscosity (friction at microscopic level, shear)




Equations of Fluid Dynamics: Euler Equations

0p
LI . —
Y V-{pu =0
0 0
—lpu.| + —lpuu, + Po.] =0
GrP4] + g lu + P
o (1 L, i
0t(2 ou- + pel +V (2 ou +pe+Plu| = 0

based on simplifying assumptions:

- no external forces (e.g. gravity, radiation pressure)
- no heating or cooling by radiation or heat conduction
- no viscosity (friction at microscopic level, shear)




Equations of Fluid Dynamics: Euler Equations

0p
ot V-{pu =0
0 0 ~
at(pu-) —~ 8Xj(puiuj + P6i].) = (
0 1puerpe +V( pu+pe+P) = ()
5t y) 2

... can be re-written 1n the following form:

0
ot

1
q+ flg) =0 where ¢ = ( p, P Epuzﬂw




Euler Equations ... A Recipe for a Solution?

The equations describe the time-evolution of ¢
I

0, - -flq) where = ( p, pu;, —pu2+pe

or 17 )

So: 1. define a spatial grid
2. specify 1nitial conditions for ¢ at =0 for all grid p«
and suitable boundary conditions
. compute u;, e and P
. compute right-hand side (spatial derivatives)
. take a small step in time and get a small change 1n ¢
. update g
. restart at 3.

AN O B~ W

~]

But: there are many ways how this can go wrong, as we will see ...
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