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Introduction to Numerical Hydrodynamics

2. The Linear Advection Equation

2.1 Introduction of the Linear Advection Equation



Equations of Fluid Dynamics: Euler Equations
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describe the conservation of mass, momentum and energy,
based on simplifying physical assumptions:

- no external forces (e.g. gravity, radiation pressure)
- no heating or cooling by radiation or heat conduction
- no viscosity (friction at microscopic level, shear)



Equations of Fluid Dynamics: Euler Equations
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mathematically speaking:

- a coupled system of (up to) 5 non-linear PDEs
- dependent on time and (up to) 3 space dimensions
- hyperbolic conservation laws



Equations of Fluid Dynamics: Euler Equations
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... In one space dimension, to simplify the following discussion

- a coupled system of 3 non-linear PDEs
- dependent on time and 1 space dimension
- hyperbolic conservation laws



The Euler Equations 1n Conservation Form
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... In one space dimension, to simplify the following discussion

- a coupled system of 3 non-linear PDEs
- dependent on time and 1 space dimension
- hyperbolic conservation laws



Mathematical Properties of PDEs
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is a hyperbolic system if the Jacobian matrix of the flux function

0F
F'(q) = a

q
has the following property: For each value of ¢ the eigenvalues of
F'(g) are real, and the matrix 1s diagonalizable, 1.e., there is a

complete set of linearly independent eigenvectors.
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Mathematical Properties of PDEs

classification for a linear second-order differential equation in two
independent variables
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depends on the sign of the discriminant

<) elliptic

2

b™—4dac = ) parabolic
> () hyperbolic




Mathematical Properties of PDEs
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Mathematical Properties of PDEs

classification for a linear second-order differential equation in two
independent variables
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Mathematical Properties of PDEs

classification for a linear second-order differential equation in two
independent variables
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Waves: Small-Amplitude Sound Waves

linearisation of Euler equations 52p a2p
— homogeneous wave equation: —21 — aé—; = ()
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general solution: P, = f(x—aot) + g(x+a0t)

waves propagating with sound speed a_
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In the absence of dissipation and spatial inhomogeneities (or dispersion), the
waveform of a disturbance governed by a linear wave equation maintains its size
and shape forever, apart from propagation at a constant wave speed.



Waves: Steepening of Acoustic Waves
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density profile at t =0

An acoustic wave of finite amplitude, even if it starts with a perfect sinusoidal

shape and propagates in an undisturbed medium of exactly uniform properties,
would inevitably steepen in its waveform.



Waves: Steepening of Acoustic Waves
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shock

The tendency for nonlinearities to steepen the wave profile, which would
produce multiple values for fluid properties such as gas density and velocity,
must be eventually offset by the onset of strong viscous forces. The balance of
the viscous forces and the steepening tendency mediates a shock, which is
approximated in ideal fluid flow as a discontinuous jump of gas properties
across the front,



Waves: Structure of Shock Waves
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On macroscopic scales, shock transitions may be approximated as single
discontinuous jumps.

jump conditions <> conservation laws



Properties of the Euler Equations

Some fundamental properties of the Euler equations may create
difficulties for numerical solvers and make the analysis of
discretization schemes more complicated:

- depending on the number of spatial dimensions, we have
3-5 coupled PDEs which need to be solved simultaneously

- non-linearity: even with smooth initial conditions the solutions
have a tendency to develop discontinuities (shocks)

Goal:

Find simple limit cases (fewer equations, linear, 1f possible) which
allows us to test certain aspects of numerical schemes before
attacking the Euler equations 1n their full glory.



Euler Equations, Special Case: Passive Advection

The Euler equations, 1D:
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Assuming constant pressure P and a constant flow velocity u, the
system of the Euler equations reduces to 2 separate linear PDEs:



Euler Equations, Special Case: Passive Advection

An equation of this type is known as linear advection equation and
describes the passive transport of the quantity p in a flow with
given constant velocity u# (no influence of p on the flow):



Euler Equations, Special Case: Passive Advection

The linear advection equation
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with constant flow velocity u ; ,
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has the general solution

p(x, 1) = po (x —ut)
which 1s constant along the characteristics c(?) = x¢p + ut

Proof by checking ...



Modification: Advection-Diffusion Equation

A relative of the linear advection
equation (useful for numerics*):

The advection-diffusion equation
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* parabolic PDE, smooth solution!
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for constant u and D:
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Introduction to Numerical Hydrodynamics

2. The Linear Advection Equation

2.2 Discretization Attempts and Basic Concepts



The Diffusion Equation

The diffusion equation (describing, e.g., heat conduction)
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is a parabolic PDE. It always has a smooth solution for # > 0 even
if the 1nitial conditions are discontinuous.

Discretization in time and space: ™ =nAt+t9 x;=iAx + Xx¢
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The Diffusion Equation
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Figures courtesy of Bernd Freytag

Stability of Euler scheme for the diffusion equation:

Initial condition (red) and solution (blue) for DA#/Ax2 = 0.2 (left),
0.4 (middle) and 0.6 (right)

stability: DAt/Ax2 = 1/2 positivity: DAt/Ax2 = 1/4
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The Diffusion Equation
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Initial condition (red) and solution (blue) for DA#/Ax2 = 0.1 (lett)
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and 0.5 (right) after 500 and 100 time steps, respectively.

The slightly too large time step causes non-decaying spurious

oscillations in the right panel.

The simple discretization gives reasonable results.

Figures courtesy of Bernd Freytag



Domain of Dependence and CFL Condition

CFL condition limits Az
for given Ax and velocity
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Hyperbolic PDEs have a finite physical domain of dependence due
to the finite travelling speed of waves (<> characteristics).

Courant-Friedrichs-Levy condition (CFL condition):

The numerical domain of dependence must contain the physical
domain of dependence.

The CFL condition is necessary for stability, but not sufficient.



Domain of Dependence and CFL Condition

CFL condition limits At
for given Ax and velocity
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Hyperbolic PDEs have a finite physical domain of dependence due
to the finite travelling speed of waves (<> characteristics).

Example: linear advection equation | uAt 1Ax | < 1

constant flow velocity (everywhere, at all times) —
characteristics = straight lines, slope corresponding to velocity
physical domain of dependence = starting point of characteristic



The Linear Advection Equation

The linear advection equation (with constant flow velocity u)

has a known analytical solution (pure transport of initial profile)
= perfect for testing numerical schemes!

Discretization in time and space: ™ =nAt ++t9 x;j=iAx + xg

n+l n n n
ap I ap L P” P
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The Linear Advection Equation — Crash

The linear advection equation (with constant flow velocity u)
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has a known analytical solution ¢ of initial profile)
— perfect for testing nu

Discretizatior X)@ \ 4 \\‘ ﬁ“\{ xX; = iAx + x¢
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The Linear Advection Equation — Crash
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Initial condition (red) and solution (blue) for uA#/Ax = 0.1 (left)
and 0.5 (right) after 50 and 10 time steps, respectively.

The growing oscillations render the scheme useless.

Linear stability analysis shows: The explicit Euler scheme (FTCS)
1s unconditionally unstable.

Figures courtesy of Bernd Freytag



Domain of Dependence and CFL Condition

CFL condition limits At
for given Ax and velocity
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Hyperbolic PDEs have a finite physical domain of dependence due
to the finite travelling speed of waves (<> characteristics).

Example: linear advection equation | uAt 1Ax | < 1

constant flow velocity (everywhere, at all times) —
characteristics = straight lines, slope corresponding to velocity
physical domain of dependence = starting point of characteristic



The Linear Advection Equation — A New Hope

The linear advection equation (with constant flow velocity u)

has a known analytical solution (pure transport of initial profile)
— perfect for testing numerical schemes!

Discretization in time and space: ™ =nAt++t9 x;j=iAx + Xxg

ap pn+1_ pn a pn_ pn
E 5 zAt i a_P R ZA i1 (u>0)
X X
AN
T At donor cell
>0 = p — u— (p;— pi)) (upwind)

Ax scheme (FTBS)



The Linear Advection Equation — A New Hope

numerical solution with

uAt/ Ax = 0.4

(Courant Number) and
periodic boundary
conditions, plotted after
one cycle (blue curve),

for Gaussian 1nitial profile

numerical parameters:

200 grid points
500 time steps
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donor cell
) (upwind)
scheme (FTBS)



The Linear Advection Equation — A New Hope

numerical solution with

uAt/ Ax = 0.4

(Courant Number) and
periodic boundary

conditions, plotted after

one cycle (blue curve),
for box 1nitial profile

numerical parameters:

200 grid points
500 time steps
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1.2
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—inital data
— final solution

donor cell
) (upwind)
scheme (FTBS)



The Linear Advection Equation — Homework 1

Compute the numerical solution of the linear advection equation

using the upwind (donor cell) scheme™, with the initial conditions
po(x) =1 for x<0 and p,(x) =0 for x>0
in the range 0 < x < 1, assuming u=/ and At/Ax = 0.5

Plot the resulting numerical solution and the exact analytical
solution at time ¢ = 0.5 for the cases Ax = 0.0/ and Ax = 0.00235.

. n+tl [ At n n
*upwind (donor cell) scheme = p/ = p — u— (p;— p,_,)

l Ax
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