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Introduction to Numerical Hydrodynamics

2. The Linear Advection Equation 

2.3  Basic Concepts and Tools ... continued



Discretization in Space: Concepts

 

Representation of the “real” distribution of a variable by a finite 
set of numbers (on a spatial grid)

Restriction:  
   transformation from continuous values to discrete representation 
 

Reconstruction:
   transformation from discrete representation to continuous values

Finite difference methods:
 

  -  restriction: sampling, e.g.:  i = (xi)  
  -  reconstruction: interpolation (polynomials)
  -  derivatives become finite differences



Discretization in Space: Concepts

 

Representation of the “real” distribution of a variable by a finite 
set of numbers (on a spatial grid)

Restriction:  
   transformation from continuous values to discrete representation 
 

Reconstruction:
   transformation from discrete representation to continuous values

Finite volume methods:
 

  -  restriction: integration over control volume, e.g.:

  
  -  reconstruction: by polynomials
  -  derivatives can become finite differences, or can be avoided



Discretization in Space: Concepts

 

Finite element methods:



Discretization in Space: Concepts

Frame of reference: Lagrangian vs. Eulerian grids
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Integral Form and Weak Solution
 
Any solution of the advection equation in differential form 
involves derivatives. 

However, any function – even a discontinuous one – can be 
propagated along characteristics (see, e.g., Homework 1). 
 

In certain cases, it may be important to avoid derivatives and/or 
discontinuities. 
 

Transformation: linear advection equation in integral form:

 

Definition: Solution of the PDE in integral form  weak solution 
of the PDE in differential form. 
In smooth regions: weak solution = solution.



Integral Form and Flux Centering
 
Any solution of the advection equation in differential form 
involves derivatives. 

However, any function – even a discontinuous one – can be 
propagated along characteristics (see, e.g., Homework 1). 
 

In certain cases, it may be important to avoid derivatives and/or 
discontinuities. 
 

Transformation: linear advection equation in integral form:

 

... for one grid cell and one time step:

 
Any solution of the advection equation in differential form 
involves derivatives. 

However, any function – even a discontinuous one – can be 
propagated along characteristics (see, e.g., Homework 1). 
 

In certain cases, it may be important to avoid derivatives and/or 
discontinuities. 
 

Transformation: linear advection equation in integral form:

 

... for one grid cell and one time step:
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Centering of Quantities, Fluxes, and Differences
 
Examples for “natural centering”:
 

   -  quantities at grid points (integer i indices), e.g.:
 

   -  spatial differences (half-integer i indices), e.g.: 
 

   -  time differences (half-integer n indices), e.g.: 
 

   -  fluxes at half-integer i indices (and, in fact, preferably at 
       half-integer n indices) to get update properly centered:

 
 

Effects of “natural centering”:
 

               is             for             and              
                               for
 

               is             for                          



Update Formula in Conservation Form
 
After computing the fluxes at the cell boundaries         
that characterize a method
 

   (e.g. from the fluxes in the cells:                   )
 

the update can be done by the formula 
 

  
 

This is the conservation form because the density changes only 
due to fluxes through the boundaries, and is conserved otherwise:



Stencil Diagrams
 
Any solution of the advection equation in differential form 
involves derivatives. 

However, any function – even a discontinuous one – can be 
propagated along characteristics (see, e.g., Homework 1). 
 

In certain cases, it may be important to avoid derivatives and/or 
dis 
 

The density       at grid point i and time step n+1 depends on 
values at the old time step n (direct numerical domain of 
dependence, stencil)

This is sketched in a so-called stencil diagram. On the other hand, 
the diagram shows also which points

at the new time step n+1 are influenced by      (range of influence).
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Stencil Diagrams: Spatial Centering
 
Any solution of the advection equation in differential form 
involves derivatives. 

However, any function – even a discontinuous one – can be 
propagated along characteristics (see, e.g., Homework 1). 
 

In certain cases, it may be important to avoid derivatives and/or 
dis 
 

The figure above shows stencil diagrams for 3 schemes with FT 
(forward-time) centering and different spatial centerings: 

   -  BS: backward-space   (FTBS, left)
   -  CS: center-space         (FTCS, middle)
   -  FS: forward-space       (FTFS, right)
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Stencil Diagrams: Centering in Time
 
Any solution of the advection equation in differential form 
involves derivatives. 

However, any function – even a discontinuous one – can be 
propagated along characteristics (see, e.g., Homework 1). 
 

 The figure above shows stencil diagrams for 4 schemes with CS 
(center-space) and different time centerings: 
 

   -  FT: forward-time (explicit)
   -  time-centered implicit (implicit)
   -  BT: backward-time (fully implicit)
   -  CT, Leapfrog: center-time (explicit, uses 3 time planes)
 

In implicit schemes each value at the new time level typically 
depends on all values at the old level: The full domain of 
dependence is larger than the direct domain of dependence.
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Domain of Dependence and CFL Condition

Hyperbolic PDEs have a finite physical domain of dependence due 
to the finite travelling speed of waves ( characteristics).
 

Courant-Friedrichs-Levy condition (CFL condition): 
The numerical domain of dependence must contain the physical 
domain of dependence.
 

The CFL condition is necessary for stability, but not sufficient.
 

CFL condition limits t  
for given x and velocity

✓
✘



Domain of Dependence and CFL Condition

Hyperbolic PDEs have a finite physical domain of dependence due 
to the finite travelling speed of waves ( characteristics).
 
 

Example: linear advection equation 
 

constant flow velocity (everywhere, at all times)  
characteristics = straight lines, slope corresponding to velocity 
physical domain of dependence = starting point of characteristic
 

CFL condition limits t  
for given x and velocity

✓
✘

 ut /x  1



Truncation Error
 
A sufficiently smooth function can be expanded in a Taylor series:

         

Solving for       gives

 

Repeating this for the time derivative and applying it to an entire 
PDE (FTFS) gives
 

 
 

  

The order of the truncation error is                 in this case (FTFS).
 

A high order of the truncation error hints at good accuracy for 
smooth functions.



Consistency – Stability – Convergence
 
Consistency: A numerical scheme is consistent if its discrete 
operator (with finite differences) converges towards the 
continuous operator (with derivatives) of the PDE for t, x  0 
(vanishing truncation error).
 

Stability: “Noise” (from initial conditions, round-off errors, ...) 
does not grow.
 

Convergence: The solution of the numerical scheme converges 
towards the real solution of the PDE for t, x  0 

Lax's equivalence theorem: “Given a properly posed initial value 
problem and a finite difference approximation to it that satisfies 
the consistency condition, stability is the necessary and sufficient 
condition for convergence.”

         



Introduction to Numerical Hydrodynamics

2. The Linear Advection Equation 

2.4  Examples of Numerical Schemes



Parameters of the Following Examples

 

Boundary conditions influence the properties of real world 
hydrodynamic flows.
  

Linear 1D advection: infinite domain without boundaries
 

Actual implementation of boundary conditions in numerical 
experiments: adding ghost cells, number depends on stencil.

In the following examples: periodic boundary conditions
 

      vt/ x = 0.4  (Courant Number) 
 

     200 grid points                                     update formula:
     500 time steps

       one full cycle
  

Initial condition: “spikes” (Gaussian, rectangle, triangle, half-
ellipse), see Jiang & Shu (1996)



Linear Advection – Naïve FTCS Scheme 

∂ y
∂ t

= D
∂

2 y

∂ x2

Stencil diagram and (disastrous) test result (initial condition: red, 
solution: blue) for explicit Euler scheme (FTCS) with flux at 

The oscillations already seen earlier grow exponentially. After 
some time the numerical result does not have the faintest 
resemblance with the true solution.             
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Linear Advection – Implicit Centered Scheme 

∂ y
∂ t

= D
∂

2 y

∂ x2

Stencil diagram and test result (initial condition: red, solution: 
blue) for implicit centered scheme with flux 

The centering of the scheme in space and time seems promising. 
However, the initial conditions is severely distorted.             
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Linear Advection – BTCS Scheme 

∂ y
∂ t

= D
∂

2 y

∂ x2

Stencil diagram and test result (initial condition: red, solution: 
blue) for fully implicit BTCS scheme with flux 

The fully implicit treatment takes effect: the result looks almost 
smooth (with some non-decaying small-scale wiggles) but is 
smeared out heavily.             
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Linear Advection – Donor Cell (FTBS) Scheme 

∂ y
∂ t

= D
∂

2 y

∂ x2

Stencil diagram and test result (initial condition: red, solution: 
blue) for donor cell (FTBS) scheme with flux 

The result is wonderfully smooth but smeared out severely. 
Upwinding seems promising to achieve stability. However, the 
accuracy of the scheme has to be improved.            
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Linear Advection – FTFS Scheme 

∂ y
∂ t

= D
∂

2 y

∂ x2

Stencil diagram and (disastrous) test result (initial condition: red, 
solution: blue) for FTFS scheme with flux 

Small-scale oscillations grow even faster than for the naïve scheme 
and render the FTFS scheme useless (for        ).            
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Linear Advection – Lax-Friedrichs Scheme 

∂ y
∂ t

= D
∂

2 y

∂ x2

Stencil diagram and test result (initial condition: red, solution: 
blue) for Lax-Friedrichs scheme with flux 

The smearing is so strong that not even the number of initial 
spikes is conserved. And there are some non-decaying small-scale 
wiggles left. Note: odd-even decoupling.            
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Linear Advection – Lax-Wendroff Scheme 

∂ y
∂ t

= D
∂

2 y

∂ x2

Stencil diagram and test result (initial condition: red, solution: 
blue) for Lax-Wendroff scheme (                  ) with flux 

The result is smooth with considerable overshoot (that does not 
grow much with time any more). This second order scheme might 
be useful for more regular initial conditions.            
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Linear Advection – Beam-Warming Scheme 

∂ y
∂ t

= D
∂

2 y

∂ x2

Stencil diagram and test result (initial condition: red, solution: 
blue) for Beam-Warming scheme (                  ) with flux 

The result is smooth with considerable overshoot (that does not 
grow much with time any more). This second order scheme might 
be useful for more regular initial conditions.            
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Linear Advection – Fromm Scheme 

∂ y
∂ t

= D
∂

2 y

∂ x2

Stencil diagram and test result (initial condition: red, solution: 
blue) for Fromm scheme (                  ) with flux 

The result is smooth with some amount of overshoot. The initial 
shape of the spikes is recognizable. So far the best scheme, if the 
overshoot can be accepted.
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The Linear Advection Equation – Homework 2

 

Compute the numerical solution of the linear advection equation 

 

in the range 0  x  1, with the initial conditions
 

                         for               and                        for
 

assuming u=1 and  t/x = 0.5, for different numerical schemes:
(a) Lax-Friedrichs, (b) Lax-Wendroff and (c) Beam-Warming.
 

Plot the resulting numerical solutions and the exact analytical 
solution at time t = 0.5  for the cases x = 0.01  and x = 0.0025,
and compare the results to the upwind (donor cell) scheme (see 
homework 1).

∂

∂ t
 u

∂

∂ x
= 0

0 x = 1 x0 0 x = 0 x0 
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