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Introduction to Numerical Hydrodynamics

2. The Linear Advection Equation 

2.5  Analysis of Numerical Schemes



The Linear Advection Equation – Homework 2

 

Compute the numerical solution of the linear advection equation 

 

in the range 0  x  1, with the initial conditions
 

                         for               and                        for
 

assuming u=1 and  t/x = 0.5, for different numerical schemes:
(a) Lax-Friedrichs, (b) Lax-Wendroff and (c) Beam-Warming.
 

Plot the resulting numerical solutions and the exact analytical 
solution at time t = 0.5  for the cases x = 0.01  and x = 0.0025,
and compare the results to the upwind (donor cell) scheme (see 
homework 1).
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Homework 1 and 2 – Results

 

  



Homework 1 and 2 – Results

 

  



Homework 1 and 2 – Summary

 

  -  Higher spatial and temporal resolution (for given velocity and  
     Courant number) gives a steeper gradient in the numerical 
     solution (i.e., a better correspondence to the exact solution) .
 

  -  The first order methods (Lax-Friedrichs and upwind/donor cell)
     give very smeared solutions.
 

  -  The second order methods (Lax Wendroff and Beam-Warming)
     give oscillations. 

This qualitatively different behaviour of first and second order 
methods is typical, and can be understood with the following 
analysis using modified equations.



Analysis of Schemes – Modified Equations

 

General idea: 

The discrete equation is an approximation of the original PDE
(recall definitions of truncation error and consistency of a scheme)

BUT:  
 

The discrete equation may be an even better approximation of a 
modified version of the original PDE (corresponding to a higher 
order of the truncation error).
 

This modified equation may tell us something about the 
qualitative behaviour of the numerical scheme ...



Truncation Error
 
A sufficiently smooth function can be expanded in a Taylor series:

         

Solving for       gives

 

Repeating this for the time derivative and applying it to an entire 
PDE (FTFS) gives
 

 
 

  

The order of the truncation error is                 in this case (FTFS).
 

A high order of the truncation error hints at good accuracy for 
smooth functions.



Analysis of Schemes – Modified Equations

 

Example: Lax-Friedrichs method for the linear advection equation 

The discrete equation:
 

  
 

Replacing the discrete solution in  with the exact solution (x,t) 
of the original PDE, we obtain the local truncation error for this 
numerical scheme:
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Analysis of Schemes – Modified Equations

 

Example: Lax-Friedrichs method for the linear advection equation 

Taylor expansion about (x,t) gives: 
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Analysis of Schemes – Modified Equations

 

Example: Lax-Friedrichs method for the linear advection equation 

Taylor expansion about (x,t) gives: 
 

  
 

 
                                     = 0  ( is a solution of the original PDE)
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Analysis of Schemes – Modified Equations

 

Example: Lax-Friedrichs method for the linear advection equation 

Taylor expansion about (x,t) gives: 
 

  
 

 
                                     = 0  ( is a solution of the original PDE)
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Analysis of Schemes – Modified Equations

 

Example: Lax-Friedrichs method for the linear advection equation 

Taylor expansion about (x,t) gives: 
 

  
 

 
                                     = 0  ( is a solution of the original PDE)
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Analysis of Schemes – Modified Equations

 

Example: Lax-Friedrichs method for the linear advection equation 

The discrete equation:
 

  
 

Replacing the discrete solution in  with the exact solution (x,t) 
of the original PDE, and using Taylor expansion, we obtain the 
local truncation error:
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Analysis of Schemes – Modified Equations

 

Example: Lax-Friedrichs method for the linear advection equation 

The discrete equation
 

  
 

represents a first order accurate approximation to the original PDE 
(i.e. the linear advection equation), but a second order accurate 
approximation to the modified equation

... which is an advection-diffusion equation  
      smearing of numerical solutions has a simple explanation!
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Analysis of Schemes – Modified Equations

 

The advection-diffusion equation

with

                                                           (Lax-Friedrichs scheme)

or
 

                                                           (upwind (donor cell) scheme)

 

is a second order accurate model for the respective discrete 
versions of the linear advection equation
 

      explains typical diffusive behaviour of first order schemes
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Analysis of Schemes – Modified Equations

 

The advection-diffusion equation

with

                                                           (FTFS scheme)

or
 

                                                           (upwind (donor cell) scheme)

 

is a second order accurate model for the respective discrete 
versions of the linear advection equation
 

      D<0 (anti-diffusion) explains problems with FTFS scheme
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Analysis of Schemes – Modified Equations

 

The dispersive equation

with

                                                                             (Lax-Wendroff)

or
 

                                                                             (Beam-Warming)

 

is a third order accurate model for the respective discrete versions 
of the linear advection equation
 

      explains typical oscillations of second order schemes ...
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Analysis of Schemes – Modified Equations

 

The dispersive equation

with

                                                                             (Lax-Wendroff)

or
 

                                                                             (Beam-Warming)

 

applied to a linear wave with frequency   and wave number k 
leads to the dispersion relation, phase velocity and group velocity
 

        =  u k +  k3 ,   cp =  u +  k2    and    cg  =  u + 3 k2
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Analysis of Schemes – Modified Equations

 

The dispersive equation

with

                       for                                                  (Lax-Wendroff)

or
 

                       for                                                  (Beam-Warming)

 

original PDE (linear advection equation):   = 0  no dispersion! 
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Analysis of Schemes – Summary

 

     second order schemes: 
 

   modified equation: dispersive equation

 

 

      oscillating behaviour of the numerical solution
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Analysis of Schemes – Summary

 

     second order schemes: 
 

   modified equation: dispersive equation

 

 

      oscillating behaviour of the numerical solution
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Analysis of Schemes – Summary
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   first order schemes: 
 

   modified equation: advection-diffusion equation

 

 

      diffusive behaviour of the numerical solution



Linear Stability Analysis – Original PDE

 

The dispersive equation

with

                       for                                                  (Lax-Wendroff)

or
 

                       for                                                  (Beam-Warming)

 

original PDE (linear advection equation): 
 

     -  constant amplitude (no growth or decay)
     -  no dispersion (all waves travel at same speed)
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Linear Stability Analysis – General Idea

 

The dispersive equation

with

                       for                                                  (Lax-Wendroff)

or
 

                       for                                                  (Beam-Warming)

 

original PDE (linear advection equation): 
 

     -  no dispersion (all waves travel at same speed)
     -  constant amplitude (no growth or decay)
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Linear Stability Analysis – FTCS Scheme

 

The dispersive equation

with

                       for                                                  (Lax-Wendroff)

or
 

                       for                                                  (Beam-Warming)

 

original PDE (linear advection equation): 
 

     -  constant amplitude (no growth or decay)
     -  no dispersion (all waves travel at same speed)
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Linear Stability Analysis – Donor Cell Scheme

 

The dispersive equation

with

                       for                                                  (Lax-Wendroff)

or
 

                       for                                                  (Beam-Warming)

 

original PDE (linear advection equation): 
 

     -  constant amplitude (no growth or decay)
     -  no dispersion (all waves travel at same speed)
     

∂

∂ t
 u

∂

∂ x
= 

∂
3 


∂ x3

  0 ∣ u
 t
 x ∣  1  cg  u

  0 ∣ u
 t
 x ∣  1  cg  u



Linear Stability Analysis – Remarks

 

The dispersive equation

with

                       for                                                  (Lax-Wendroff)

or
 

                       for                                                  (Beam-Warming)

 

original PDE (linear advection equation): 
 

     -  constant amplitude (no growth or decay)
     -  no dispersion (all waves travel at same speed)
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