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Introduction to Numerical Hydrodynamics

3. Non-linear Advection

3.1  Introduction of Burgers' Equation



Burgers' Equation and the Euler Equations
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The Euler equations, 1D:

 

reformulate the
equation of motion:
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The Euler equations, 1D:

 

reformulate the
equation of motion:

 

         = 0                                                                                      ... and neglect pressure gradients:

Burgers' equation captures the
essential non-linearity of the 
1D Euler equation of motion.
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Burgers' Equation: Definitions
 
Viscous and inviscid Burgers' Equation: 

                                                    in conservation form (flux      )

 

                    ... in quasi-linear form:

                    ... in integral form:
 

  
 

  -  resembles the linear advection equation
  -  but: non-linear with v(x,t) instead of v = const  
  -  describes the transport of v with velocity v
                                                        

         

 

                                                    in conservation form (flux      )

 

                    ... in quasi-linear form:

                    characteristic curves c(t):
 

                                                               
 

                    velocity v is constant along characteristics
                    (proof by checking, dv/dt = 0)
 

                                         'graphical solution'
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Triple-valued solutions that make sense ...
 
Viscous and inviscid Burgers' Equation: 

                                                    in conservation form (flux      )

 

                    ... in quasi-linear form:

                    ... in integral form:
 

  
 

  -  resembles the linear advection equation
  -  but: non-linear with v(x,t) instead of v = const  
  -  describes the transport of v with velocity v
                                                        

         

 

                                                    in conservation form (flux      )

 

                    ... in quasi-linear form:

                    characteristic curves c(t):
 

                                                               
 

                    velocity v is constant along characteristics
                    (proof by checking, dv/dt = 0)
 

                                         'graphical solution'
                                       

h3

h2

h1

water level in a breaking 
wave



Triple-valued solutions that don't make sense ...

                                        Waves



Triple-valued solutions that don't make sense ...

                                        Waves



Burgers' Equation: Viscosity
 
Viscous and inviscid Burgers' Equation: 

                                                    in conservation form (flux      )

 

                    ... in quasi-linear form:

                    ... in integral form:
 

  
 

Goal:   capture the vanishing viscosity solution by solving the 
            inviscid equation ...  
                                                        

         



Burgers' Equation: Compression Waves
 
A compression wave with v/x < 0 steepens with time and 
characteristic curves can cross: multiple-valued solution?
 

The viscous Burgers equation is a parabolic PDE and has a unique 
solution for all times t > 0.
 

Vanishing viscosity: we search for a solution of the inviscid 
Burgers equation which is a solution of the viscous Burgers 
equation in the limit   0.
 

Instead of a multiple-valued solution we get a discontinuity where 
the characteristics end.
 

Discontinuities (shocks) are unavoidable.
 

Discontinuities should be allowed in the initial conditions. 
 

         Riemann problem: conservation law together with 
             piecewise constant data with a single discontinuity.
 



Burgers' Equation: The Riemann Problem
 
 

piecewise constant 
initial data:      

Case I: 
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      shock wave

      with shock speed 

vl

vr

v x , t  = {v l xst
v r xst}

s =
1 
2 

v lv r

v x ,0 = {v l x0 
vr x0}



Burgers' Equation: The Riemann Problem
 
 

piecewise constant 
initial data:      

Case I: 
 

vl > vr   (> 0)

 

  unique weak solution: 
      shock wave

      with shock speed 

vl

vr

v x , t  = {v l xst
v r xst}

s =
1 
2 

v lv r

v x ,0 = {v l x0 
vr x0}



Burgers' Equation: The Riemann Problem
 
 

piecewise constant 
initial data:      

Case I: 
 

vl > vr   (> 0)

 

  unique weak solution: 
      shock wave

      with shock speed 

v ( x ,0) = {v l x<0
vr x>0}

vl

vr

v ( x , t ) = {v l x<st
vr x>st}

s =
1
2
(v l+v r)

characteristics



The Riemann Problem: Shock Speed
 
 

In a time interval t 
a shock with speed s travels 
a distance x = s t.
 

Integration of the PDE

over t and x results in

For almost constant states and fluxes to the left and right we get

 

For x = s t and t  0 we get the shock speed
 

                                   for Burgers' equ.:
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going out of the shock

instable!



Burgers' Equation: The Riemann Problem
 
 

piecewise constant 
initial data:      

Case II: 
 

vl < vr   (> 0)

 

  infinitely many (!)                                                     example:
      weak solutions ...                                                      rarefaction 
                                                                                        wave
                                                            
      

v x ,0 = {v l x0 
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vanishing viscosity solution!



Burgers' Equation: The Riemann Problem
 
 

piecewise constant 
initial data:      

Case II: 
 

vl < vr   (> 0)

 

  infinitely many (!)                                                     example:
      weak solutions ...                                                      rarefaction 
                                                                                        wave
                                                            
      

v x ,0 = {v l x0 
vr x0}

vl

vr

v ( x , t ) = {
v l x<v l t
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stable!



The Riemann Problem: Similarity Solutions
 
 

The quasi-linear PDE                             for the Riemann problem

 

has similarity solutions of the form

Inserting this ansatz into the PDE gives for t>0

with the solutions
 

                                                  or

 

                                                          for Burgers' equation: v=x/t



Burgers' Equation: Expansion Waves
 
Smooth regions with v/x > 0 produce a rarefaction wave or 
expansion wave. 
 

Steps with vleft < vright :
 

  -  expansion shock with characteristics going out of it is a 
     weak solution 
  -  but: any perturbation or small (but non-zero) viscosity would 
     smooth the step and cause a rarefaction wave (rarefaction fan)
 

Only solutions that fulfil an entropy condition are allowed.
 

Lax entropy condition: For a convex scalar conservation law, a 
discontinuity propagating with speed s satisfies the Lax entropy 
condition if  vleft > s > vright  

         expansion shocks are not allowed
             an entropy condition destroys time-reversibility 
 



Introduction to Numerical Hydrodynamics

3. Non-linear Advection

3.2  Numerical Examples for Burgers' Equation 



Burgers' Equation: Numerical Schemes 

 

conservation form                                                 quasi-linear form

 

conservative and non-conservative 
upwind* schemes: 
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Burgers' Equation: Numerical Schemes 

 

Example: Gaussian data                                   

 

 

Initial data (red) and numerical solutions (blue) using the 
conservative (left panel) and non-conservative (right panel) 
upwind schemes. Note the change in the area under the curve 
and the wrong shock speed in the non-conservative case.



Burgers' Equation: Numerical Schemes 

 

Example: Step function (Riemann, Case I: known shock speed) 

 

 

Exact solution and numerical solution using the conservative 
(left panel) and non-conservative (right panel) upwind schemes. 
Clearly wrong shock speed ( = 0) in the non-conservative case
(right panel; no shock propagation, v(x,t) = v(x,0) for all t>0) ...



Burgers' Equation: Numerical Schemes 

 

conservation form                                                 quasi-linear form

 

conservative and non-conservative 
upwind* schemes: 

 

wrong shock speed, area under v-curve not conserved
 

A conservative scheme is crucial !
... but is it sufficient?
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Burgers' Equation: Numerical Schemes 

 

conservation form                                                 quasi-linear form

 

conservative and non-conservative 
upwind* schemes: 

Lax-Wendroff Theorem: 
 

If the solution of a conservative method converges (x  0), 
it converges towards a weak solution of the conservation law.
 

Note:  - convergence as such is not guaranteed
           - selection of 'right' weak solution (entropy) not guaranteed
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Burgers' Equation: Numerical Schemes 

 

Flux splitting:    adapting schemes written for one sign of the 
                          velocity to allow for both signs, still guaranteeing 
                          proper upwinding, 
 

with

Example:   extension of FTBS scheme, stable for both signs of v:

 

     e.g., for Burgers' equation: velocity at cell boundary



Burgers' Equation: Numerical Schemes 

 

Example: Expansion shock and rarefaction fan 

 

 

The initial data (left panel) should result in a rarefaction fan (right 
panel, black and blue curves). Instead, the extended FTBS scheme 
produces a stationary expansion shock (red curve) that violates the 
entropy condition (solution stationary because f=1/2 everywhere).  
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Burgers' Equation: Numerical Schemes 

 

Entropy fix: 
 

  -  for most Riemann problems, the extended FTBS scheme 
     actually produces initially the right result
  -  only for a transonic rarefaction wave it differs 
     (see last example)
  -  for Burgers' equation, the flux through the stagnation point 
     (v=0) in a transonic rarefaction wave is f = v2/2 = 0
 

       extend the scheme with an additional branch (entropy fix):

 

Alternative:   entropy production by artificial viscosity, 
                      add an artificial diffusion term to the flux.



Burgers' Equation: Numerical Schemes 

 

Concepts from the linear world: 
 

  -  Consistency: 
        the same (vanishing truncation error for t, x  0) 
 

  -  Conservativity: 
        the same (now even more important)
 

  -  Stability:
 

        o  Linear stability: not directly applicable 
 

        o  Total variation diminishing (TVD): applicable
 

        o  Alternative: base scheme on concepts that work in the 
            linear case and perform lots of tests for the non-linear PDE



Burgers' Equation – Homework 3

 

Compute the numerical solution 
of Burgers equation 

 using the conservative and non-conservative upwind* schemes 

 
 

 (a)  for the same set-up as in Homework 1&2 (initial conditions, 
        range, numerical parameters, with v taking the role of ), and
 (b)  adding +1 to the initial data everywhere (to avoid v=0). 
 

Compare the results to the exact solution (note: the discontinuity 
propagates with shock speed  s = (vleft + vright)/2).  
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