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Introduction to Numerical Hydrodynamics

3. Non-linear Advection

3.1 Introduction of Burgers' Equation



Burgers' Equation and the Euler Equations
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Burgers' Equation and the Euler Equations

The Euler equations, 1D: 50
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equation of motion:
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Burgers' Equation and the Euler Equations

The Euler equations, 1D: 50

reformulate the
equation of motion:




Burgers' Equation and the Euler Equations

The Euler equations, 1D: 30

reformulate the
equation of motion:

... and neglect pressure gradients:



Burgers' Equation and the Euler Equations

The Euler equations, 1D: 30

reformulate the
equation of motion:

Burgers' equation captures the
essential non-linearity of the
1D Euler equation of motion.




Burgers' Equation: Definitions

inviscid Burgers' Equation:

characteristic curves c(%):

de
T — c(t) =v(zp) t + 0o

velocity v 1s constant along characteristics
(proof by checking, dv/dt = 0)

— 'graphical solution’



Burgers' Equation: Solutions

inviscid Burgers' Equation:

solution v(x,t) /L

fl
characteristics c(1) T f ///\T T T T T T T

N
initial data v(xg) /\

Characteristics and solution for Burgers’ equation (small t).

de
T — c(t) =v(zp) t + 0o

velocity v 1s constant along characteristics

— 'graphical solution’



Burgers' Equation: Solutions
inviscid Burgers' Equation:

solution v(x,t)

characteristics c(t) W

0

initial data v(xp)

Shock formation in Burgers’ equation.

de
T — c(t) =v(zp) t + 0o

velocity v 1s constant along characteristics

— 'graphical solution’



Burgers' Equation: Solutions

inviscid Burgers' Equation:

solution v(x,t) /

characteristics c(1) / % /T ]
fl

initial data v(xp)

Triple-valued solution to Burgers’ equation at time t > T}.

de
T — c(t) =v(zp) t + 0o

velocity v 1s constant along characteristics

— 'graphical solution’



Triple-valued solutions that make sense ...
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Triple-valued solutions that don't make sense ...

/V;—L/, unphysical density profile

A B LC
density profile at t =0

An acoustic wave of finite amplitude, even if it starts with a perfect sinusoidal

shape and propagates in an undisturbed medium of exactly uniform properties,
would inevitably steepen in its waveform.



Triple-valued solutions that don't make sense ...

density p — po

shock

The tendency for nonlinearities to steepen the wave profile, which would
produce multiple values for fluid properties such as gas density and velocity,
must be eventually offset by the onset of strong viscous forces. The balance of
the viscous forces and the steepening tendency mediates a shock, which is
approximated in ideal fluid flow as a discontinuous jump of gas properties
across the front,



Burgers' Equation: Viscosity

Viscous and inviscid Burgers' Equation:

v+ limiting solution as e — 0

*——- e = 0.005

\. € =0.0]

Solution to the viscous Burgers’ equation for two different values of e.

Goal: capture the vanishing viscosity solution by solving the
inviscid equation ...



Burgers' Equation: Compression Waves

A compression wave with ov/ox < 0 steepens with time and
characteristic curves can cross: multiple-valued solution?

The viscous Burgers equation 1s a parabolic PDE and has a unique
solution for all times ¢ > 0.

Vanishing viscosity: we search for a solution of the inviscid
Burgers equation which 1s a solution of the viscous Burgers

equation in the limit £ — 0.

Instead of a multiple-valued solution we get a discontinuity where
the characteristics end.

Discontinuities (shocks) are unavoidable.

Discontinuities should be allowed in the initial conditions.

— Riemann problem: conservation law together with
piecewise constant data with a single discontinuity.



Burgers' Equation: The Riemann Problem

piecewise constant ( |
2 v, x<0
initial data: y(x,0) =7

v, x>0

\ r



Burgers' Equation: The Riemann Problem

piecewise constant (
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initial data: v(x,0) = [V 7 y
v, x>0
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Case I:
vi>ve (>0)




Burgers' Equation: The Riemann Problem

piecewise constant (

e v, x<0
initial data: V(X,O) = |
v x>0
L r
characteristics
V]
Case I:
vi>ve (> 0) 4
I Ve
0
( 3\
. . Vv, Xx<st
= unique weak solution: v(x,t) =
shock wave v, x>t
\ J




The Riemann Problem: Shock Speed

In a time interval At
a shock with speed s travels AT a
a distance Ax = s At. E f(a) f(q)
Integration of the PDE (L a
dg | 9f(q) - -
+ =0 +
ot ' Or X pace XHAX

over At and Ax results in

r+Ax tL A2
/ lg(z,t+ At) — g(z,t)] dx —I—/; [f(g(xz + Az, t)) — fq(x,t))]dt =0

For almost constant states and fluxes to the left and right we get
Az q — Azg + At f(q:) — At f(q) = O(A#?) .

For Ax = s At and At — (0 we get the shock speed
3ot - 3o

_f(Qr)_f(QI) ' . . _i : .
E— — for Burgers' equ.:  s= o 2 (vr + 1)

2
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Burgers' Equation: The Riemann Problem

piecewise constant (

.. <O
initial data: y(x,0) = Vi X
v, x>0
\ .
characteristics
V] e
Case I:
vi>ve (> 0) ___>
ST Ve
0
- : v, x<st
= unique weak solution: v(x,t) = |7l
shock wave v, x>t

with shock speed § = _(Vz‘H’r)




Burgers' Equation: The Riemann Problem

piecewise constant (

initial data: wx0) = W X<
y. x>0
l ‘
Case II: - V.
vi<ve. (>0)

Vi




Burgers' Equation: The Riemann Problem

piecewise constant (

initial data: p(x,0) = [V x<(
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vi<ve. (>0)
Vi




Burgers' Equation: The Riemann Problem

piecewise constant (
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= 1nfinitely many (!)
weak solutions ...



Burgers' Equation: The Riemann Problem

piecewise constant rv <0
initial data: p(x,0) = |
y, x>0
- ‘ T =gt
characteristics :
Case II: — -V
vi<ve. (>0)
7 J
0
r
: : <
= infinitely many (!) v(x,t) = |V X<st example:
weak solutions ... v, X>st entropy-
\ . .
1 violating

with shock speed § = E(V,-I-Vr) shock



Burgers' Equation: The Riemann Problem

| characteristics
v x<( going out of the shock

v, x>0
‘ T = st
characteristics

piecewise constant (
initial data: p(x,0) = |

Case II: — -V
vi<ve. (>0)
177 .
E] r '3 instable!
= infinitely many (!) v(x, t) = |V X<st example:
weak solutions ... v, x> st entropy-
1 violating

with shock speed § = E(V,-I-Vr) shock



Burgers' Equation: The Riemann Problem

piecewise constant (

initial data: p(x,0) = [V x<(
v, x>0
characteristics
Case II: - v,
vi<ve. (>0)
Vi
: 0

= 1nfinitely many (!)
weak solutions ...



Burgers' Equation: The Riemann Problem

piecewise constant
initial data:

Case II:
vi<vy (>0

Vi

y(x,0) =

r
Vi

V

k r

= 1nfinitely many (!)
weak solutions ...

x<()
x>()

characteristics

’ stable!
v X<t example:
xlt VISX<y rarefaction
wave
v, x>V

vanishing viscosity solution!



The Riemann Problem: Similarity Solutions

The quasi-linear PDE for the Riemann problem
dq ~df dq [ q Hzxz<O
8t+dq83:_0 q(m,O)_{qr if >0

has similarity solutions of the form
e =i(3).

Inserting this ansatz into the PDE gives for >0
RIS
12 4 * dg t ¢=0

with the solutions
d(7)=0 = ()=t or ()70 = F(aF)) =7

— for Burgers' equation: v=x/¢



Burgers' Equation: Expansion Waves

Smooth regions with 0v/0x > 0 produce a rarefaction wave or
expansion wave.

Steps with viesi < Vyight

- expansion shock with characteristics going out of it is a
weak solution

- but: any perturbation or small (but non-zero) viscosity would
smooth the step and cause a rarefaction wave (rarefaction fan)

Only solutions that fulfil an entropy condition are allowed.

Lax entropy condition: For a convex scalar conservation law, a
discontinuity propagating with speed s satisfies the Lax entropy
condition if vjefy > 8 > Vyight

— expansion shocks are not allowed
an entropy condition destroys time-reversibility



Introduction to Numerical Hydrodynamics

3. Non-linear Advection

3.2 Numerical Examples for Burgers' Equation



Burgers' Equation: Numerical Schemes

conservation form quasi-linear form
0v 0v
0t  0x\2 0t 0x

conservative and non-conservative
upwind*® schemes:

R (A U
* £
0= 2



Burgers' Equation: Numerical Schemes

Example: Gaussian data

0.5 0.5

0.0

0o

-it5s—7—7—T—Tr——TTT T "7 TT 7 -0f+—T—T——T "7 7T T T T T T T T T T
0.ao 0.1 0.z 0.3 0.4 0.5 0.6 0.7 0.8 04 1.0 0o 0.1 0.z 03 04 0.5 0.6 0.7 0.8 04 1.0

Initial data (red) and numerical solutions (blue) using the
conservative (left panel) and non-conservative (right panel)
upwind schemes. Note the change in the area under the curve
and the wrong shock speed in the non-conservative case.



Burgers' Equation: Numerical Schemes

Example: Step function (Riemann, Case I: known shock speed)

Burgers, conserva ftive Burgers, non—canserva tive

0.5 0.5

\ 0.0+

0.0+

-it5s—7—7—T—Tr——TTT T "7 TT 7 -0f+—T—T——T "7 7T T T T T T T T T T
0.ao 0.1 0.z 0.3 0.4 0.5 0.6 0.7 0.8 04 1.0 0o 0.1 0.z 03 04 0.5 0.6 0.7 0.8 04 1.0

Exact solution and numerical solution using the conservative
(left panel) and non-conservative (right panel) upwind schemes.
Clearly wrong shock speed ( = 0) in the non-conservative case
(right panel; no shock propagation, v(x,z) = v(x,0) for all £>0) ...



Burgers' Equation: Numerical Schemes

conservation form quasi-linear form
0v 0v
0t  0x\2 0t 0x

conservative and non-conservative
upwind*® schemes:

* for v>0)

wrong shock speed, area under v-curve not conserved

A conservative scheme 1s crucial !
... but 1s 1t sufficient?



Burgers' Equation: Numerical Schemes

conservation form

oV 0 |1
L= =0
0t Ox\2
conservative
upwind* scheme
At ]
n+l n n\2 no\2
V. =y. — — —[{v.] — |v._ * for v>0
I I AX 2 (( 1) ( I 1) )

Lax-Wendroff Theorem:

If the solution of a conservative method converges (Ax — 0),
it converges towards a weak solution of the conservation law.

Note: - convergence as such 1s not guaranteed
- selection of 'right' weak solution (entropy) not guaranteed



Burgers' Equation: Numerical Schemes

Flux splitting: adapting schemes written for one sign of the
velocity to allow for both signs, still guaranteeing
proper upwinding,

dft df~

_ ot - : dfT df”
fle)=f"(q)+ f (g0 with o >0 - <0 .

Example: extension of FTBS scheme, stable for both signs of v:

o f(p?) if Vil >0 (q?;l) f( ") if g7, £ q"
H3 | fPR) i vy <0 fis T (?+ : if g7, =q”
> - > dg \4: ) g1 =4
' . \\ .
¢.g., for Burgers' equation: — velocity at cell boundary
1(m if O 1
fi’h—{f( 7’ v 1 >0 v =5 (0 + o)
3 2 ( z—|—1) if Vivd <0



Burgers' Equation: Numerical Schemes

Example: Expansion shock and rarefaction fan

1.0F : 1.0F
0.5¢ 0.5
0.0 s ook
05} 0.5}
1.0} 1.0}
I0I4I | I0I2I | IOIUI | I0I2I | IOI.4I I0I4I | IOI2I | IOIOI | I0I2I | IOI4I
X X

The 1nitial data (left panel) should result 1n a rarefaction fan (right
panel, black and blue curves). Instead, the extended FTBS scheme
produces a stationary expansion shock (red curve) that violates the
entropy condition (solution stationary because f=1/2 everywhere).

Figures courtesy of Bernd Freytag



Burgers' Equation: Numerical Schemes

Entropy fix:

- for most Riemann problems, the extended FTBS scheme

actually produces initially the right result
- only for a transonic rarefaction wave 1t differs

(see last example)

- for Burgers' equation, the flux through the stagnation point
(v=0) in a transonic rarefaction wave is f = v2/2 = ()

— extend the scheme with an additional branch (entropy fix):

-

f;%:<

\

if Uiyl >0 and v; >0

if v,;,1 <0 and v;y 1 <0
2
if v, <0<

CoN

(1'?+1 ) ;

= BJ—

vt

i

o

Ui41

Alternative: entropy production by artificial viscosity,
add an artificial diffusion term to the flux.



Burgers' Equation: Numerical Schemes

Concepts from the linear world:

- Consistency:
the same (vanishing truncation error for A¢, Ax — 0)

- Conservativity:
the same (now even more important)

- Stability:
o Linear stability: not directly applicable
o Total variation diminishing (TVD): applicable

o Alternative: base scheme on concepts that work in the
linear case and perform lots of tests for the non-linear PDE



Burgers' Equation — Homework 3

l—vz) =)

Compute the numerical solution ov 0

of Burgers equation E T ﬁ_x

2

using the conservative and non-conservative upwind* schemes

At 1
n+l n n\2 no\2
= - - O
n+l n At n n n forv=0
Vi Vi = Vi (Vi_ Vz'—l)

Ax

(a) for the same set-up as in Homework 1&2 (initial conditions,

range, numerical parameters, with v taking the role of p), and
(b) adding +1 to the 1nitial data everywhere (to avoid v=0).

Compare the results to the exact solution (note: the discontinuity
propagates with shock speed s = (Viefy + Viight)/2).

)
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