Introduction to Numerical Hydrodynamics and Radiative Transfer

Part II: Hydrodynamics, Lecture 7

HT 2012

Susanne Höfner Susanne.Hoefner@physics.uu.se

Introduction to Numerical Hydrodynamics

4. Non-Linear Hydrodynamics

4.1 New Challenges

Equations of Fluid Dynamics: Euler Equations

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \boldsymbol{u}) = 0$$
$$\frac{\partial}{\partial t} (\rho u_i) + \frac{\partial}{\partial x_j} (\rho u_i u_j + P \delta_{ij}) = 0$$
$$\frac{\partial}{\partial t} \left(\frac{1}{2} \rho u^2 + \rho e \right) + \nabla \cdot \left((\frac{1}{2} \rho u^2 + \rho e + P) \boldsymbol{u} \right) = 0$$

describe the conservation of mass, momentum and energy, based on simplifying physical assumptions:

- no external forces (e.g. gravity, radiation pressure)
- no heating or cooling by radiation or heat conduction
- no viscosity (friction at microscopic level, shear)

Equations of Fluid Dynamics: Euler Equations

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \boldsymbol{u}) = 0$$
$$\frac{\partial}{\partial t} (\rho u_i) + \frac{\partial}{\partial x_j} (\rho u_i u_j + P \delta_{ij}) = 0$$
$$\frac{\partial}{\partial t} \left(\frac{1}{2} \rho u^2 + \rho e \right) + \nabla \cdot \left((\frac{1}{2} \rho u^2 + \rho e + P) \boldsymbol{u} \right) = 0$$

mathematically speaking:

- a coupled system of (up to) 5 non-linear PDEs
- dependent on time and (up to) 3 space dimensions
- hyperbolic conservation laws

Equations of Fluid Dynamics: Euler Equations

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x} (\rho u) = 0$$
$$\frac{\partial}{\partial t} (\rho u) + \frac{\partial}{\partial x} (\rho u u + P) = 0$$
$$\frac{\partial}{\partial t} \left(\frac{1}{2} \rho u^2 + \rho e \right) + \frac{\partial}{\partial x} \left((\frac{1}{2} \rho u^2 + \rho e + P) u \right) = 0$$

- a coupled system of 3 non-linear PDEs
- dependent on time and 1 space dimension
- hyperbolic conservation laws

$$\frac{\partial}{\partial t} \mathbf{q} + \frac{\partial}{\partial x} \mathbf{F}(\mathbf{q}) = 0$$
$$\mathbf{q} = \begin{pmatrix} \rho \\ \rho u \\ \frac{1}{2} \rho u^2 + \rho e \end{pmatrix} \mathbf{F} = \begin{pmatrix} \rho u \\ \rho u u + P \\ (\frac{1}{2} \rho u^2 + \rho e + P) u \end{pmatrix}$$

- a coupled system of 3 non-linear PDEs
- dependent on time and 1 space dimension
- hyperbolic conservation laws

- a coupled system of 3 non-linear PDEs
- dependent on time and 1 space dimension
- hyperbolic conservation laws

- a coupled system of 3 non-linear PDEs
- dependent on time and 1 space dimension
- hyperbolic conservation laws

$$\frac{\partial}{\partial t} \mathbf{q} + \frac{\partial}{\partial x} \mathbf{F}(\mathbf{q}) = 0$$
$$\mathbf{q} = \begin{pmatrix} \rho \\ \rho u \\ \rho e_{tot} \end{pmatrix} \mathbf{F} = \begin{pmatrix} \rho u \\ \rho u + P \\ (\rho e_{tot} + P)u \end{pmatrix}$$

$$\rho e_{tot} = \rho e + \frac{1}{2} \rho u^2$$

$$\rho e_{tot} = \frac{P}{\gamma - 1} + \frac{1}{2} \rho u^2$$

equation of state for polytropic gas:

$$\rho e = \frac{P}{\gamma - 1}$$

Mathematical Properties of PDEs

$$\frac{\partial}{\partial t} \mathbf{q} + \frac{\partial}{\partial x} \mathbf{F}(\mathbf{q}) = 0$$

is a hyperbolic system if the Jacobian matrix of the flux function

$$F'(q) = \frac{\partial F}{\partial q}$$

has the following property: For each value of q the eigenvalues of F'(q) are real, and the matrix is diagonalizable, i.e., there is a complete set of linearly independent eigenvectors.

Mathematical Properties of PDEs $\frac{\partial}{\partial t} q + \frac{\partial}{\partial x} F(q) = 0$ conservative form

is a hyperbolic system if the Jacobian matrix of the flux function

$$F'(q) = \frac{\partial F}{\partial q}$$

has the following property: For each value of q the eigenvalues of F'(q) are real, and the matrix is diagonalizable, i.e., there is a complete set of linearly independent eigenvectors.

$$\frac{\partial}{\partial t} \mathbf{q} + \mathbf{F}'(\mathbf{q}) \frac{\partial}{\partial x} \mathbf{q} = 0$$

quasilinear form

Mathematical Properties of PDEs

hyperbolic character of system \Rightarrow important consequences for the propagation of information in the flow:

quantities called invariants are transported along characteristics $dx/dt = \lambda$

where λ is an eigenvalue of the Jacobian matrix

$$\boldsymbol{F}'(\boldsymbol{q}) = \frac{\partial \boldsymbol{F}}{\partial \boldsymbol{q}}$$

invariant *r* is constant along the characteristic \Rightarrow

$$\frac{dr}{dt} = \frac{\partial r}{\partial t} + \frac{\partial r}{\partial x} \frac{dx}{dt} = 0 \quad \text{or} \quad \frac{\partial r}{\partial t} + \lambda \frac{\partial r}{\partial x} = 0$$

Mathematical Properties of PDEs

hyperbolic character of system \Rightarrow important consequences for the propagation of information in the flow:

quantities called invariants are transported along characteristics $dx/dt = \lambda$

where λ is an eigenvalue of the Jacobian matrix

$$\boldsymbol{F}'(\boldsymbol{q}) = \frac{\partial \boldsymbol{F}}{\partial \boldsymbol{q}}$$

invariant *r* is constant along the characteristic \Rightarrow

$$\frac{dr}{dt} = \frac{\partial r}{\partial t} + \frac{\partial r}{\partial x} \frac{dx}{dt} = 0 \quad \text{or} \quad \frac{\partial r}{\partial t} + \lambda \frac{\partial r}{\partial x} = 0$$

example: advection equation (constant velocity u) $\frac{\partial \rho}{\partial t} + u \frac{\partial \rho}{\partial x} = 0$ x = u t $r = \rho$

$$\frac{\partial}{\partial t} q + \frac{\partial}{\partial x} F(q) = 0$$

$$q = \begin{pmatrix} \rho \\ \rho u \\ \rho e_{tot} \end{pmatrix} F = \begin{pmatrix} \rho u \\ \rho u u + P \\ (\rho e_{tot} + P)u \end{pmatrix} \qquad \begin{array}{l} \text{equation of state} \\ polytropic gas: \\ \rho e_{tot} = \frac{P}{\gamma - 1} + \frac{1}{2} \rho u^2 \\ 0 & 1 & 0 \\ \frac{1}{2} (\gamma - 3)u^2 & (3 - \gamma)u & (\gamma - 1) \\ \frac{1}{2} (\gamma - 1)u^3 - u(\rho e_{tot} + P)/\rho & (\rho e_{tot} + P)/\rho - (\gamma - 1)u^2 & \gamma u \\ \end{array}$$

Mathematical Properties of PDEs

hyperbolic character of system \Rightarrow important consequences for the propagation of information in the flow:

quantities called invariants are transported along characteristics

$$dx/dt = \lambda$$

where λ is an eigenvalue of the Jacobian matrix

Homework 1 and 2 – Results

The Euler Equations: Numerical Challenges

Positivity of density:

To compute the velocity from momentum and density via $u = (\rho u)/\rho$ requires $\rho > 0$. An overshoot of the density to non-positive values is now disastrous.

Positivity of pressure:

The pressure $P(e,\rho)$ depends on the conserved quantities via

$$e = \frac{\rho e_{tot}}{\rho} - \frac{(\rho u)^2}{2 \rho^2}$$

An overshoot in velocity may lead to negative pressure.

This restriction is so severe that in some cases the conservation of total energy might be given up in favour of a (non-conservative) formulation where the positivity of internal energy is guaranteed.

Introduction to Numerical Hydrodynamics

4. Non-Linear Hydrodynamics

4.2 The Riemann Problem for the 1D Euler Equations

$$\frac{\partial}{\partial t} \mathbf{q} + \frac{\partial}{\partial x} \mathbf{F}(\mathbf{q}) = 0$$

$$\mathbf{q} = \begin{pmatrix} \rho \\ \rho u \\ \frac{1}{2} \rho u^2 + \rho e \end{pmatrix} \qquad \mathbf{F} = \begin{pmatrix} \rho u \\ \rho u u + P \\ (\frac{1}{2} \rho u^2 + \rho e + P) u \end{pmatrix}$$

Riemann problem

- conservation law
- piecewise constant initial condition (discontinuity)

allows for analytical solution \Rightarrow test case for numerical schemes!

The Riemann Problem: Shock Speed

over Δt and Δx results in

 $\int_{x}^{x+\Delta x} \left[q(x,t+\Delta t) - q(x,t)\right] dx + \int_{t}^{t+\Delta t} \left[f(q(x+\Delta x,t)) - f(q(x,t))\right] dt = 0$

For almost constant states and fluxes to the left and right we get

$$\Delta x q_{\rm l} - \Delta x q_{\rm r} + \Delta t f(q_{\rm r}) - \Delta t f(q_{\rm l}) = O(\Delta t^2)$$

For $\Delta x = s \ \Delta t$ and $\Delta t \rightarrow 0$ we get the shock speed

$$s=rac{f(q_{
m r})-f(q_{
m l})}{q_{
m r}-q_{
m l}}$$

Rankine-Hugoniot Conditions

The Rankine-Hugoniot jump conditions for the 1D Euler equations, describing a shock with speed *s*, become

$$s \ [\rho_r - \rho_l] = (\rho u)_r - (\rho u)_l$$

$$s \ [(\rho u)_r - (\rho u)_l] = (\rho u u + P)_r - (\rho u u + P)_l$$

$$s \ [(\rho e + \rho u^2/2)_r - (\rho e + \rho u^2/2)_l] = ((\rho e + \rho u^2/2 + P)u)_r - ((\rho e + \rho u^2/2 + P)u)_l$$

They can only be fulfilled for certain combinations of q_l and q_r . An arbitrary Riemann problem typically causes more than one jump.

The Riemann Problem for the 1D Euler Equations

The state on each side is described by 3 values.

Each wave family can cause a discontinuity:

- sound waves (u±c) can cause shocks or rarefaction waves
- the material flow (u, entropy wave) can have a contact discontinuity

The solution of the Riemann problem (for convex – simple – equation of state) can comprise:

- 0 or 1 contact discontinuity
- 0, 1 or 2 shocks
- 0, 1 or 2 rarefaction waves

not more than 2 (shocks + rarefaction waves)

Introduction to Numerical Hydrodynamics

4. Non-Linear Hydrodynamics

4.3 The Shock Tube Problem

Shock Tube Problem: Definition

Shock Tube Problem: Structure of the Solution

Introduction to Numerical Hydrodynamics

Selected Literature

Selected Literature

General Background

LeVeque, R.J., Numerical Methods for Conservation Laws, Birkhäuser, 1990

Astrophysical Context

LeVeque, R.J., Nonlinear Conservation Laws and Finite Volume Methods, in: Computational Methods for Astrophysical Fluid Flow, Saas-Fee Advanced Course 27, eds. LeVeque R.J., Mihalas D., Dorfi E.A., Müller E., Springer, 1997

Flux Tube Problem

An Introduction to Scientific Computing: Twelve Computational Projects Solved with MATLAB, by I. Danaila, P. Joly, S.M. Kaber and M. Postel, Springer, 2007