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Introduction to Numerical Hydrodynamics

4. Non-Linear Hydrodynamics  

4.1  New Challenges



Equations of Fluid Dynamics: Euler Equations
 

describe the conservation of mass, momentum and energy,
based on simplifying physical assumptions:
 

  -  no external forces (e.g. gravity, radiation pressure)
  -  no heating or cooling by radiation or heat conduction 
  -  no viscosity (friction at microscopic level, shear)
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Equations of Fluid Dynamics: Euler Equations
 

mathematically speaking:
 

  -  a coupled system of (up to) 5 non-linear PDEs
  -  dependent on time and (up to) 3 space dimensions
  -  hyperbolic conservation laws
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Equations of Fluid Dynamics: Euler Equations
 

... in one space dimension, to simplify the following discussion
 

  -  a coupled system of 3 non-linear PDEs
  -  dependent on time and 1 space dimension
  -  hyperbolic conservation laws
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The Euler Equations in Conservation Form
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total energy: 
kinetic + internal



The Euler Equations in Conservation Form
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The Euler Equations in Conservation Form
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... in one space dimension, to simplify the following discussion
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  -  dependent on time and 1 space dimension
  -  hyperbolic conservation laws
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Mathematical Properties of PDEs
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is a hyperbolic system if the Jacobian matrix of the flux function 

has the following property: For each value of  q  the eigenvalues of 
F'(q)  are real, and the matrix is diagonalizable, i.e., there is a 
complete set of linearly independent eigenvectors.

Euler equations:  eigenvalues  waves with velocities u–c, u, u+c,
                            where is upwind ?

F ' (q) =
∂F
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Mathematical Properties of PDEs
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Mathematical Properties of PDEs
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hyperbolic character of system    important consequences for the 
propagation of information in the flow:
 

quantities called invariants are transported along characteristics
                                             dx/dt =  
where  is an eigenvalue of the Jacobian matrix

invariant r is constant along the characteristic   
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The Euler Equations in Conservation Form
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Mathematical Properties of PDEs
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hyperbolic character of system    important consequences for the 
propagation of information in the flow:
 

quantities called invariants are transported along characteristics
                                             dx/dt =  
where  is an eigenvalue of the Jacobian matrix

invariant r is constant along the characteristic   

                                                    or 

example:  Euler equations
      eigenvalues     velocities u, u+c, u–c    (c = sound speed)
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Homework 1 and 2 – Results

 

  first order 
schemes: 
diffusive

second order 
schemes: 
oscillating



The Euler Equations: Numerical Challenges
 
Positivity of density:
 

To compute the velocity from momentum and density via 
u = (u)/  requires  > 0. An overshoot of the density to non-
positive values is now disastrous.

Positivity of pressure:
 

The pressure P(e,) depends on the conserved quantities via

An overshoot in velocity may lead to negative pressure.
 

This restriction is so severe that in some cases the conservation of 
total energy might be given up in favour of a (non-conservative) 
formulation where the positivity of internal energy is guaranteed.
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Introduction to Numerical Hydrodynamics

4. Non-Linear Hydrodynamics  

4.2  The Riemann Problem for the 1D Euler Equations



The Euler Equations in Conservation Form
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Riemann problem
 

  -  conservation law
  -  piecewise constant initial condition (discontinuity)
 

allows for analytical solution  test case for numerical schemes!
 



The Riemann Problem: Shock Speed
 
 

In a time interval t 
a shock with speed s travels 
a distance x = s t.
 

Integration of the PDE

over t and x results in

For almost constant states and fluxes to the left and right we get

 

For x = s t and t  0 we get the shock speed
 

                                   for Burgers' equ.:



Rankine-Hugoniot Conditions
 

The Rankine-Hugoniot jump conditions for the 1D Euler 
equations, describing a shock with speed s, become

They can only be fulfilled for certain combinations of ql and qr .
 

An arbitrary Riemann problem typically causes more than one 
jump.

s [ρr−ρl ] = (ρu)r−(ρu)l

s [(ρu)r−(ρu)l ] = (ρu u+P)r−(ρu u+P)l

s [(ρe+ρu2
/2)r−(ρe+ρu2

/2)l ] = ((ρe+ρu2
/2+P)u)r−((ρe+ρu2

/2+P)u)l



The Riemann Problem for the 1D Euler Equations
 

The state on each side is described by 3 values.
 

Each wave family can cause a discontinuity:
  -  sound waves (uc) can cause shocks or rarefaction waves
  -  the material flow (u, entropy wave) can have a contact
     discontinuity
 

The solution of the Riemann problem (for convex – simple – 
equation of state) can comprise:
 

   0 or 1 contact discontinuity
   0, 1 or 2 shocks
   0, 1 or 2 rarefaction waves
   not more than 2 (shocks + rarefaction waves)



Introduction to Numerical Hydrodynamics

4. Non-Linear Hydrodynamics  

4.3  The Shock Tube Problem



Shock Tube Problem: Definition
 



Shock Tube Problem: Structure of the Solution
 



Introduction to Numerical Hydrodynamics

Selected Literature  



Selected Literature
 
General Background
 

LeVeque, R.J., Numerical Methods for Conservation Laws, 
     Birkhäuser, 1990

Astrophysical Context
 

LeVeque, R.J., Nonlinear Conservation Laws and Finite Volume 
     Methods, in: Computational Methods for Astrophysical Fluid 
     Flow, Saas-Fee Advanced Course 27, eds. LeVeque R.J., 
     Mihalas D., Dorfi E.A., Müller E., Springer, 1997

Flux Tube Problem
 

An Introduction to Scientific Computing: Twelve Computational 
     Projects Solved with MATLAB, by I. Danaila, P. Joly, 
     S.M. Kaber and M. Postel, Springer, 2007 
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