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Abstract. We describe advanced image processing algorithms, implemented in a data analysis package for conven-
tional and cross-dispersed echelle spectra. Comparisons with results from other packages illustrate the outstanding
quality of the new REDUCE package, particularly in terms of resulting noise level and treatment of CCD defects and
cosmic ray spikes. REDUCE can be adapted relatively easily to handle a variety of instrument types, including spec-
trographs with prism or grating cross-dispersers, possibly fed by a fiber or image slicer, etc. In addition to reduced
spectra, an accurate spatial profile is recovered, providing valuable information about the spectrograph PSF and
simplifying scattered light corrections.
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1. Introduction

Cross-dispersed echelle spectrographs are now in
widespread use, providing broad wavelength coverage at
high dispersion in a rectangular format well suited to
pixel array detectors. Commissioning of the Ultraviolet-
Visual Echelle Spectrograph (UVES) at the Very Large
Telescope (VLT) facility inspired this exploration of
procedures for reducing raw echelle data into calibrated
one-dimensional spectra.

Techniques for reducing cross-dispersed echelle spec-
tra have been described by many authors (e.g. Moreno
et al. 1982; Rossi et al. 1985; Ponz et al. 1986; Goodrich
& Veilleux 1988; Marsh 1989; Mukai 1990; Hall et al. 1994;
Valenti 1994; Piskunov 1995; Hinkle et al. 2000). Despite
this rich cumulative heritage, it is important to formulate
mathematically the concept of the best solution for each
step involved and use it to critically analyze and improve
the existing algorithms. We adopt several requirements for
an ideal echelle reduction package.

Cross-dispersed echelle orders are curved and hence
cannot be aligned with detector rows or columns. Raw
data should not be interpolated to straighten echelle or-
ders (as in Moreno et al. 1982) because this distorts the
extracted spectrum (Marsh 1989; Mukai 1990) and leads
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to cyclical variations in S/N ratio and effective instrumen-
tal profile. Order curvature and location should be deter-
mined empirically from the actual image or at least from
contemporaneous data.

Each spectral order is a two-dimensional intensity sur-
face built from a sequence of one-dimensional monochro-
matic slit images. These images can be averaged to pro-
duce a relatively low noise one-dimensional model that can
be used to “optimally” extract an order. Optimal extrac-
tion maximizes S/N ratio in the extracted spectrum and
more importantly provides a statistical basis for identify-
ing and handling bad pixels.

Data reduction should be driven by a flexible script-
ing language, but otherwise require minimal interac-
tion. Automated procedures are less subjective, yield re-
producible results, and allow batch processing of large
datasets. Conditions that are not handled automatically
must be detected and reported, so that problems can be
traced easily and fully processed spectra are always of the
highest quality.

Using the Interactive Data Language (IDL), we have
developed the software package REDUCE to process cross-
dispersed echelle or even single order data. Our REDUCE
package is derived from the Batch Echelle Reduction
Package (BERP), written mainly by Valenti and described
in Hinkle et al. (2000). BERP evolved from procedures de-
scribed in Valenti (1994), adding support for several spec-
trographs and implementing a form of optimal extraction
inspired by Piskunov (1995).
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The optimal extraction algorithm in REDUCE only
works when the relative illumination profile perpendic-
ular to echelle dispersion (hereafter “spatial profile”) is
aligned with detector rows or columns and varies slowly
with wavelength. Aside from these limitations, REDUCE
handles a wide variety of situations, including single order
spectra, closely packed echelle orders, fiber or slicer input,
undersampled images, noisy data, etc.

In this paper we provide a brief overview of REDUCE
and then describe in detail new algorithms developed
mainly by Piskunov for mapping order locations and
determining spatial profiles used in optimal extraction.
When appropriate, we describe the behavior of REDUCE
by reference to existing literature. We illustrate perfor-
mance using red-arm UVES (VLT, D’Odorico 2000) and
GIRAFFE (SAAO, MUSICOS-type fiber-fed instrument)
spectra of the rapidly oscillating peculiar A-type (roAp)
stars HD 217522 (UVES) and HD 166473 (GIRAFFE),
as well as a blue-arm UVES spectrum of the metal poor
subgiant CS 22892-052. We compare output from REDUCE,
BERP, IRAF, and the ESO MIDAS/UVES reduction.

2. Overview of the reduction process

All raw calibration and science data must be in FITS for-
mat. A modular routine reads images, trims extraneous
pixels, and forces a canonical orientation with wavelength
in each order increasing left to right and order number in-
creasing top to bottom. A mean bias frame is subtracted
from all non-bias images.

Certain instrument and exposure specific information
is required for processing, including orientation of the
echelle format, usable portion of the detector, gain, read
noise, background count rate, and exposure time. REDUCE
either extracts these quantities (if available) from the
FITS header or uses default values for the specified in-
strument. Values may also be mandated in the reduction
script for a particular set of data. This information is then
written back to the FITS header using E keywords, such
as E TIME, which contains the exposure time. Creation of
standardized header keywords simplifies communication
between procedures and allows most routines to be instru-
ment independent, making it relatively easy for proficient
spectroscopists with IDL programming experience to add
support for new instruments.

Calibration data should include bias, flat field, and
wavelength exposures. Incandescent lamp exposures ob-
tained with a cross-dispersed echelle spectrograph are
not at all “flat”, but we use this standard terminology
nonetheless. Flats with different exposure times may be
used to optimize S/N ratio in the blue and red. Optional
calibration data may include dark frames and an order
definition image (often a flat field obtained with a short
aperture).

All calibration data for an observing sequence are pro-
cessed before the science data. Bias frames are co-added
in two groups (preferably before and after science obser-
vations). The pair of co-added bias frames are compared

Fig. 1. Illustration of the cluster “coloring” procedure. The
top panel shows a negative of the original image on a loga-
rithmic scale. This spectrum of HD 166473 was taken with the
GIRAFFE fiber-fed spectrometer (SAAO). The shapes of or-
ders are defined by the prism cross-disperser. The bottom panel
shows every pixel selected by criterion (1) and a snapshot taken
during the cluster coloring process. The three bottom orders
have been grouped into three distinct clusters. As identifica-
tion proceeds upwards, the next order begins as two separate
clusters that will eventually merge into one cluster. The top
two orders have not yet been painted.

to detect bias shifts, monitor read noise, and identify out-
liers. The two summed bias images are then combined into
a mean bias frame, ignoring bad pixels.

Construction of a mean flat field image requires more
care because lamp brightness can vary, longer exposures
are more susceptible to cosmic rays, and echelle orders
may drift between exposures (especially if they bracket
science observations). Pixel by pixel median filtering of
normalized images handles lamp variations and cosmic
rays, but fails when orders drift. Rather than treating
pixels independently, we analyze a group of several rows
(or columns depending on spectrum orientation). Intensity
may change rapidly along a row, but we assume slow
spatial changes in the relative intensity of different flat
field exposures. In the limit of negligible drift, relative
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Fig. 2. The cluster identification (coloring) and merging pro-
cedure. The top panel shows (in negative) 7 clusters detected
in the image. The two small corner clusters are ignored, as
they have pixels in the top or bottom row for all x. The other
two partial orders are restricted to columns where they do not
touch end rows of the detector. The black lines trace order lo-
cation fits. A bad row (white line around row 300) cuts the
third order into two clusters. The fit to the smaller cluster has
a higher coincidence with the fourth order and will confuse the
automatic merging procedure. The interactive mode remedies
the situation, as shown in the bottom panel.

intensity is constant over the entire image, but the proce-
dure allows for moderate spatial variations.

The information from neighboring pixels in a row is
combined to obtain a precise estimate of the relative in-
tensity distribution expected for any individual pixel. The
expected intensity distribution can be used in conjunction
with a noise model to identify all statistically significant
outliers, due to cosmic rays or other abnormal processes.
The distribution also provides weights for combining un-
corrupted pixels. This procedure is essentially a variant
of optimal extraction, used mainly to identify and remove
bad pixels. See Hinkle et al. (2000) for more details. After
co-addition, the mean flat field image is normalized, leav-
ing only pixel-to-pixel quantum efficiency variations and
fringes. In Sect. 6 we describe the procedure we use to
normalize the flat field image.

In Sect. 3 we describe a new clustering algorithm
that robustly locates spectral orders in two-dimensional
spectroscopic data. A well-exposed order definition im-
age is used to map default order locations, which are then
used for extracting spectra with negligible continuum (e.g.

wavelength calibration exposures) or even for all spectra
if the spectrograph is stable. Order locations may also be
traced for individual stellar spectra.

Science data are initially processed by subtracting the
mean bias image and then dividing by the normalized flat.
A low noise spatial profile is determined along each or-
der, and an empirical noise model is constructed for each
pixel. This information is used to optimally extract each
order by fitting the spatial profile to each column in an or-
der. Formal uncertainties are computed for each extracted
pixel. The measured response function along orders (“or-
der shape”) in the flat field image are used to approxi-
mately flatten each extracted order.

3. Mapping order locations

In general echelle order curvature and location on the de-
tector can either be assumed a priori or determined em-
pirically from the image being reduced. Assumed order
maps can be calculated from an optical model or measured
empirically from a reference image. Alignment of the as-
sumed map with actual order locations may require an
offset. Although some echelle spectrographs may be sta-
ble enough to rely on an assumed order map, we believe a
general echelle reduction package should determine order
curvature and location empirically, whenever possible.

Empirical order maps may be determined interactively
or automatically. Automated procedures are preferable be-
cause they are reproducible and allow batch processing of
many spectra, though the robustness of human interac-
tion must then be captured in an automated algorithm.
Automated procedures must also evaluate whether order
mapping has been successful, halting or reverting to a de-
fault order map if a specific image cannot be mapped, for
example when there is no signal.

The new order location algorithm presented here con-
sists of four steps: selection of pixels that might be in
spectral orders, clustering analysis of these selected pix-
els, merging and rejection of clusters, and fitting of merged
clusters. The procedure is sufficiently robust to use on ev-
ery science image, but UVES is stable enough that order
locations need only be determined once, for example us-
ing the mean flat. A special order definition image may be
needed when an image slicer is used as the entrance slit.

Recall that after forcing a canonical orientation, spec-
tral orders are aligned approximately along image rows.
Selection of pixels that might be in spectral orders is done
by first smoothing each column and then selecting pixels
above the median of the difference between the original
and the smoothed column:

ax,y is selected if ax,y > ax,y + MEDIAN(ax,y − ax,y). (1)

The smoothing filter can be tuned depending on order
separation and contrast. Figure 1 shows an example of
pixels selected by the criterion in Eq. (1).

The x and y indices of selected pixels are stored and
used in the clustering analysis, which associates connected
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Fig. 3. Pixel sampling of a spectral order is usually opti-
mized to use detector area efficiently, while retaining adequate
sampling. This minimal sampling results in visible “interfer-
ence” between periodic pixel spacing and quasi-periodic spac-
ing of columns where orders cross from one detector row to
the next. This is seen as “waves” in the maximum amplitude
along an order. The large depressions in this fragment of the
UVES CS 22892-052 spectrum are absorption lines.

groups of pixels. One can think of this procedure as col-
oring selected pixels so that all neighboring pixels (with x
and y that differ by at most 1) have the same color. This
is a non-trivial problem because some initially detached
clusters may ultimately need to be merged, as illustrated
in Fig. 1.

Coloring begins by creating a vector to store the color
of each selected pixel in x and y. Neighbors in the same
row are easily detected by sorting x and y so that y in-
creases monotonically, while x scans the row correspond-
ing to each value of y. In order to make the procedure
as efficient in the vertical direction, we also sort x and y
so that x increases monotonically, while y scans columns.
We use a lookup array that relates both sets of sorted co-
ordinates to assign a common color to neighboring pixels,
thereby forming a cluster. Spurious clusters may persist in
areas of very low signal. After the coloring step, clusters
with fewer pixels than some tunable threshold are dese-
lected, causing them to be ignored in the final fitting step.

Orders are often truncated by the top or bottom edge
of the detector, potentially hampering attempts to fit or-
der location. To avoid this problem, columns with cluster
pixels in the first or last row of the detector are ignored,
when fitting the remaining pixels in a cluster (see Fig. 2).
This prepares for accurate extraction of partial orders.

Even after clustering analysis, a single order may be
partitioned into multiple clusters due to detector defects
or deep absorption features. Polynomial fits are useful for
deciding whether to merge or discard clusters. For each
cluster, we fit a polynomial of tunable order to pixel y
values, as a function of x, and then extend the fit to cover
all columns. Extended fits for pairs of consecutive clusters
are compared to identify which pair has fits that are most
coincident for x values present in the later cluster. As a

Fig. 4. A segment of a flat field order (top) and the correspond-
ing model image (bottom) reconstructed from the decomposed
spectrum and oversampled (M = 10) spatial profile. The flat
field image was obtained with the ESO UVES spectrometer
using an image slicer. Note the bad row and the low sensitiv-
ity pixel (a trap) near the right edge of the observed order.
In the model reconstruction the bad row has been completely
removed with the help of a mask, and the trap is automatically
removed by the decomposition algorithm.

metric of coincidence, we use the number of columns in
which both fits disagree by less than a few pixels.

In automatic mode, the most coincident pair of clusters
is merged if the two fits coincide over at least 95% of the x
values present in the later cluster. Otherwise, the smaller
of the two clusters is ignored. After merging or discarding
a cluster, coincidence is re-assessed based on new polyno-
mial fits. Merging halts when no clusters coincide. This
procedure must converge in less than Nclusters−Norders it-
erations but in practice the detector properties and layout
of the focal plane may allow more rapid convergence.

If the automated merging algorithm fails, manual in-
tervention is required. The only situation we found requir-
ing such intervention was the case of a bad row crossing
multiple spectral orders (Fig. 2). In this case, fits to partial
clusters created by the bad row may result erroneously in
more significant coincidence with an adjacent order.

For each order, our clustering analysis yields a polyno-
mial description of order location, an uncertainty estimate
for the fitted polynomial, and the beginning and ending
columns to use during spectrum extraction. In addition,
we attempt to identify the echelle order number of the
first and last order in the image, based on the observed
change in order spacing. For a grating cross-disperser, the
grating equation for the echelle (assuming that each
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Fig. 5. A segment of a stellar spectrum (HD 217522) obtained with an image slicer (upper left) and the corresponding decom-
position into an oversampled (M=10) spatial profile (upper right) and the spectrum (lower right). The reconstructed model
image (Eq. (4)) is shown in the lower left. The upper-right panel also shows data for every column, scaled and offset according
to the model. The only significant outlier corresponds to a cosmic ray feature in the observation which left no trace in the
extracted spectrum. The regions used to estimate scattered light are marked in the upper-right panel.

detector column corresponds to a constant reflection
angle) gives:

∆y · n · (n+ 1) = const. (2)

where ∆y is the separation between echelle orders n and
n + 1 along a fiducial column on the detector. An analo-
gous relationship can be defined for prism cross-dispersers.
In principle, three consecutive orders are sufficient to de-
termine n, even without knowledge of the constant. In
practice, echelle spectrographs operate at very high n,
making Eq. (2) rather similar for adjacent order pairs.
Nonetheless, echelle order identification is usually reliable
for the large number of orders typically present in many
echelle spectrographs.

4. Spatial and spectral decomposition of an order

Perhaps the most important recent improvement in echelle
reduction procedures is the introduction of spectral order
decomposition. Recall that we define the spatial profile to
be the relative illumination profile of an order perpendic-
ular to echelle dispersion. For an ideal optical system that
is perfectly aligned, the spatial profile is a monochromatic

image of the illuminated entrance slit, aligned along de-
tector columns (after re-orientation, if necessary). In this
case a spectral order S can be represented as the product
of a spectrum f and a spatial profile g:

S(x, y) = f(x)× g(y − y0(x)) (3)

where the function y0(x) describes the order location.
In practice, the ideal image is also convolved with the
PSF and sampled with detector pixels of significant size
(Fig. 3). Although detector pixels set a natural spatial
scale, g must be sampled on a finer grid to reproduce the
sampling “waves” visible in Fig. 3.

The discrete version of Eq. (3) includes integration of
the spatial profile over each detector pixel:

Sx,y ≈ fx ·
∑
j

ωjx,ygj (4)

where ωjx,y are the weights, which differ from zero only
for indices j that map into pixel x, y. The structure of
the ω for each column deserves a closer look. Define an
integer oversampling factor, M , to be the detector pixel
size divided by the grid size adopted for g. Then ωjx,y for
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Fig. 6. Flat field normalization using spatial profiles. Panels
from the top: spatial profile for individual swaths, the derived
order shape function, a segment of the mean flat field image
containing part of a single order, and the same segment after
normalization using spatial profiles.

a given x, y is:

ωjx,y =


0 j < j0
FRACT (y0(x)M) j = j0
1/M j = j0 + 1, ...,M − 1
1− FRACT (y0(x)M) j = j0 +M
0 j > j0 +M

(5)

Fig. 7. Flat fielding of stellar spectra. The top panel shows
a normalized flat field image. Vertical and diagonal bands of
reduced sensitivity are likely caused by CCD internal struc-
ture. The middle panel shows a normalized stellar spectrum
(HD 217522), for illustration purposes only, since this is not
part of the normal reduction procedure. The bottom panel
shows a flat fielded stellar spectrum image.

where j0 is the index of the first subpixel that falls (per-
haps only partially) in detector pixel x, y, and FRACT is
the fraction of that first subpixel that is contained in the
detector pixel. This structure is exactly the same for all y
at a given x! The relationship between the j0 and j0 +M
elements of ω reflects the periodic nature of ω, due to the
use of an integer oversampling factor.

During spectroscopic reduction, our goal is to decom-
pose each observed order Sx,y into the spectrum fx and a
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spatial profile gj . We can accomplish this decomposition
by solving the inverse problem:

F ≡
∑
x,y

fx∑
j

ωjx,ygj − Sx,y

2

= minimum. (6)

The main advantage of this approach is that the number
of data points exceeds the number of unknowns for all
practical problems. To avoid an obvious scaling ambiguity
for f and g, we require g to be area normalized.

Selection of the oversampling factor M needs special
attention. One extreme case occurs when orders are per-
fectly aligned with detector rows, in which case no over-
sampling (M = 1) is needed. As the derivative of y0(x)
deviates from zero, M should increase. In order to decou-
ple the value of M from varying order inclination (thereby
making the problem tractable), we introduce an additional
constraint: (6):

F + Λ
∑
j

(gj+1 − gj)2 = minimum. (7)

The second term smooths the spatial profile, restricting
point-to-point variations, even if the order geometry does
not constrain every point in g. In order to solve the re-
stricted problem (7) we set the derivatives of g and f equal
to zero. This produces two systems of linear equations:∑
j

(Ajk + Λ ·Bjk) gj = Rk (8)

fx = Cx/Dx (9)

with matrices given by:

Ajk =
∑
x,y

f2
xω

j
x,yω

k
x,y (10)

Rk =
∑
x,y

Sx,yfxω
k
x,y (11)

Cx =
∑
y

Sx,y
∑
j

gjω
j
x,y (12)

Dx =
∑
y

∑
j

gjω
j
x,y

2

(13)

where Bjk is a tri-diagonal matrix with −1 on both sub-
diagonals and 2 on the main diagonal, except for the
upper-left and the bottom-right corners, which contain 1.
In the matrix equations above, we use the generic nomen-
clature N = Ny ·M .

The very simple structure of ωjx,y makes it easy to con-
struct the matrix

∑
y ω

j
x,yω

k
x,y for every x. This block-

diagonal matrix is the key to efficient computations. Each
square block has M + 1 elements on a side and is propor-
tional to the product of two scalars, such as ωjx,0 · ωkx,0,
for example. Therefore ω does not have to be computed
for every value of x. Only the first M + 1 elements are

needed! The regular shape of ωjx,y · ωkx,y greatly simplifies
the evaluation of matrix Aij in Eq. (8), making it possible
to use fast and efficient numerical methods to solve for the
spatial profile.

Iteration is used to solve Eqs. (8)–(13). Beginning with
an initial guess for the spectrum (e.g. fx =

∑
y Sx,y), we

solve Eq. (8) to obtain the spatial profile, normalize the
total area, and then solve Eq. (9) to obtain an improved
estimate of the spectrum. Iteration ceases when the max-
imum fractional change in the spectrum becomes small.

The decomposition procedure produces the best possi-
ble spectrum and slit function, if the order location yo(x)
is accurately determined and large scale structure in the
image is dominated by the spectrum. Local defects like
cosmic rays, bad pixels, and noise have minimal impact
on the results! This can be illustrated by comparing an
observed order with a model order constructed from the
derived f and g, convolved with detector pixels accord-
ing to Eq. (4) (Figs. 4 and 5). The only type of artifact
that adversely affects decomposition are rows of bad pix-
els with length and orientation similar to spectral orders.
Fortunately, such defects can usually be identified a priori
and ignored during decomposition, leaving no trace of the
bad row (Fig. 4).

Generalization of the decomposition procedure to han-
dle tilted or curved slit images is straightforward, if the
image geometry is known. The only difference is that the
mapping between f and detector pixel is a function of
both x and y, making the pattern of ωjx,y slightly more
complicated. Nevertheless, the structure of Ajk remains
block-diagonal. If the PSF has a 2D structure, for exam-
ple when an image slicer is used, the order can still be
decomposed using a 2D representation of the PSF in place
of the 1D spatial profile. For UVES, deviations from a 1D
representation of g cause errors smaller than the typical
readout noise.

REDUCE uses the decomposition routine to (a) normal-
ize flat field images and derive order shape functions, (b)
locate the inter-order gaps and estimate scattered light,
and (c) extract spectral orders.

5. Estimating scattered light

Flat field normalization and spectral extraction both re-
quire estimates of the scattered light background beneath
each spectral order. The spectrum itself precludes direct
measurement of the background beneath an order, but
interpolation of the background between orders often pro-
vides an adequate estimate.

First we locate the position and extent of background
regions between orders. This step can be non-trivial if the
spectrum is obtained with an image slicer. We decom-
pose a central group of columns in each order, empirically
measuring noise from the standard deviation of the ob-
served order minus the reconstructed model (Fig. 5). We
then fit a linear background to the bottom envelope of
the recovered spatial profile, using a threshold that allows
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Fig. 8. Comparison of spectra of HD 217522 optimally extracted with REDUCE (narrow black line) and reduced with IRAF (wider
grey line). Top panel: continuum normalized order 83 containing Hα. Dots show the difference between the two reductions, shifted
upwards by 0.5. Middle panel: segment of the same order in more detail. Bottom panel: extracted spectra and difference for
order 101.

background points to fall below the fit within the esti-
mated noise level.

We define a background region at the beginning and
another at the end of each spatial profile. Each background
region contains several consecutive detector pixels below
the linear fit just described. Robust estimation of a smooth
background typically requires at least 8 pixels in a back-
ground region. This assessment is based on comparisons of
background determinations in adjacent columns. A more
elaborate procedure may be required to handle ghosts or
scattered light from bright emission lines. Currently, sky
emission is included in the background estimate and hence
gets subtracted automatically from the target spectrum.
If an image slicer is used, we do not attempt to use pix-
els between the slices to estimate background because the
amount of overlap is very hard to estimate.

Background intervals defined with respect to the spa-
tial profile are mapped into background stripes in the ob-
served image by applying the selected offsets to the nom-
inal order location y0. For each column, separate medians
are calculated for background pixels above and below each
order. The resulting pair of background vectors for each
order are filtered in the dispersion direction to remove
vertical defects. Finally, linear interpolation in y is used
to estimate the scattered light beneath each pixel of the
spectral order.

6. Normalizing flats and determining order shapes

Flat fielding helps remove pixel-to-pixel sensitivity vari-
ations, but care is required to minimize noise contribu-
tions from the mean flat described in Sect. 2. In par-
ticular, the signal level outside the central part of the
order falls rapidly, so division by the mean flat field image
would strongly magnify the contributions by low-signal
(high-noise) regions in the science image. This effect is
less important when the spatial profile is relatively flat, as
in Figs. 4 and 5, but even in this case grooves in the left
part of the order (Fig. 4) correspond to gaps between slices
where the signal is weak in the science frame (Fig. 5). The
problem is much more severe when the flat field images
have a spatial profile similar to the science exposure, for
example with fiber-fed spectrometers.

To properly weight regions at all signal levels, the mean
flat field image should be normalized prior to use in cali-
brating science images. Models of each order, constructed
from decomposed spatial profiles and extracted spectra,
provide an excellent template for flat field normalization.
The normalization region may be set to unity outside the
useful part of the science exposure. Normalization of the
flat field image is performed one order at a time. Each or-
der is split into several parts (swaths) containing approxi-
mately identical number of columns. After decomposition
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Fig. 9. Comparison of optimal extraction performed with REDUCE (narrow black line) and BERP (wider grey line) of the roAp
star HD 217522 taken with an image slicer. Top panel: normalized order 83 containing Hα. Dots show the difference between
the two reductions, shifted upwards by 0.5. Middle panel: segment of the same order in more detail. Bottom panel: extracted
spectra and difference for order 101.

the low noise spatial profiles and spectra are stored for
each swath. Spectra for all swaths are spliced together to
form the shape function for each order. For each column,
spatial profiles for the two nearest swaths are linearly in-
terpolated (or extrapolated) and scaled according to the
order shape function. This scaled spatial profile is then
used to normalize the corresponding column segment in
the mean flat. Areas outside the useful science regions are
set to unity. Figure 6 shows spatial profiles for a sequence
of swaths, an order shape function, and a segment of a flat
field image before and after normalization.

Variations in the spatial profile must be extrapolated
for pixels in the outside half of the first and the last swath.
The number of columns in a swath can be specified explic-
itly or selected automatically by REDUCE. In the latter case,
the number of columns is chosen to enforce multiple row
crossing within a swath to sample the spatial profile well.
At the same time, the number of swaths should be large
enough to track any changes in the PSF along an echelle
spectral order.

7. Optimal extraction

Horne (1986) introduced the concept of optimal extrac-
tion for low order spectra nearly aligned with detector
rows or columns. Horne divides all pixels corresponding

to the same wavelength by an estimate of the extracted
spectrum at that wavelength. Processing all pixels in this
manner yields a two-dimensional image of the spatial illu-
mination profile for each wavelength. Horne fits low order
polynomials perpendicular to the spatial axis, creating a
relatively low-noise model of migration and changes in the
spatial profile. Low order polynomials cannot describe mi-
gration of echelle orders, which cross many detector rows
or pixels. Since the procedure requires knowledge of the
extracted spectrum, iteration may be necessary.

Marsh (1989) modified the optimal extraction algo-
rithm of Horne (1986) to handle echelle orders that cross
many detector rows or columns, defining a set of low-order
polynomials parallel to the curved echelle order being ex-
tracted. By fitting along echelle orders, polynomials need
only describe changes in the spatial profile, not migration
of the spectrum across detector rows or columns. However,
interpolation of the raw data is required to apportion flux
in neighboring pixels to polynomials with subpixel offsets.
Ideally, optimal extraction should not require interpola-
tion.

Piskunov (1995) developed an orthogonal form of op-
timal extraction, fitting the spatial profile for each wave-
length with an empirically determined mean spatial pro-
file. Piskunov constructed the mean spatial profile by
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U II 3859.57 Å

Fe I 3859.91 Å

Fig. 10. Top panel: blue UVES subimage in the 3860 Å re-
gion of a metal poor star CS 22892-052 taken without slicer.
Bottom panel: comparison of spectra extracted with REDUCE

(dashed black line), the ESO MIDAS/UVES extraction (solid
black line), and a simple sum of all rows in the subimage (wide
grey line).

spline interpolating spatial profiles for each wavelength
onto an oversampled grid, allowing alignment and averag-
ing despite order curvature. Hinkle et al. (2000) aligned
spatial profiles for each wavelength without interpolating,
keeping track of subpixel offsets. Spatial profiles were in-
terleaved according to subpixel offsets, median filtered to
remove cosmic rays, and smoothed to reduce noise. Hinkle
et al. (2000) determined mean spatial profiles at several
positions along the order to track changes.

Optimal extraction in REDUCE follows the same swath-
based procedure introduced in the previous section. After
bias subtraction, the science image is divided by the
normalized flat field image. For each order, the central
swath is decomposed to obtain a preliminary spatial pro-
file used only to define background regions between orders.
Background vectors above and below each order are then
interpolated linearly to estimate the background in every
row containing spectrum. After background subtraction,
the image is decomposed again to obtain spatial profiles
for every swath. Interpolation (or extrapolation) yields the
spatial profile appropriate for each column in an order.

Decomposition also identifies bad pixels by assuming a
constant spatial profile within a swath. Each column in
an order is fit with the appropriate spatial profile, us-
ing weights based on a noise model. The resulting scale
factor is the optimally extracted relative intensity of the
spectrum for that order and column. To flatten the con-
tinuum, each extracted order is usually divided by the
order shape function determined during normalization of
the mean flat field image. For orders truncated by the top
or bottom edge of the image, no extraction occurs out-
side the valid column intervals identified during the order
location process.

The new algorithm achieves signal-to-noise ratios very
close to the Poisson limit, while remaining relatively in-
sensitive to artifacts in the data. Figure 7 illustrates one
extreme case which was encountered while reducing the
red-arm UVES spectra registered with an MIT CCD. The
original image shows the imprint of the internal structure
of the detector, which is clearly revealed in the normalized
flat (Fig. 7, top panel). The amplitude of this structure
reaches several percent, which is much larger than pixel-
to-pixel sensitivity variations. If a similar normalization
procedure is applied to the science frame (middle panel),
the same detector structure is revealed. Flat fielding (di-
vision of the science frame by the normalized flat) com-
pletely removes the artifacts. Alternative approaches to
the optimal extraction (e.g. analytical models for the slit
function) would be less successful, as the CCD structure
affects science and flat field images differently. In partic-
ular, features that cross spectral orders at an angle intro-
duce a tilt to the local cross-dispersion profiles.

8. Performance

The two new algorithms introduced here (clustering analy-
sis and spatial/spectral decomposition) require significant
computing power. For example, tracing 30 spectral orders
on a 4096× 2048 CCD takes about 2 min on a 500 MHz
Pentium III PC or 1 min on an HP J7000 workstation
running at 544 MHz. The most time-consuming step is
the decomposition routine, even with optimal use of IDL
vector operations. Decomposition of a 400×100 pixel array
takes about 10/5 s on the same machines. About half of
this time is spent on solving the band diagonal system of
equations. A call to an external routine reduces the execu-
tion time by at least 30% but makes the package platform
dependent. Complete reduction of a single 2048 × 2048
science exposure with 20 orders, including supplementary
processing of 20 flat field images, 20 bias frames, and one
ThAr reference frame, takes about 1.5–2 hours on a J7000
workstation with 1 Gbyte of RAM. Processing of subse-
quent science exposures that share the same calibration
data requires 35–40 min per frame.

9. Comparison with other reduction packages

We investigate performance of various algorithms,
comparing spectra extracted with REDUCE, the ESO
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MIDAS/UVES context (Ballester et al. 2000), IRAF
(Tody 1986), and BERP (Hinkle et al. 2000). For all pack-
ages, we use identical order locations (from the procedure
described in Sect. 3) and the same normalized flat, iso-
lating differences due mainly to choice of extraction algo-
rithm.

To compare our optimal extraction procedure with
IRAF and BERP, we consider orders 93 and 101 in a red
spectrum of the roAp-star HD 217522, taken by S. Hubrig
with UVES as part of program 65.I-0644 (Cowley et al.
2001). These data were taken with image slicer #3 (5
slices). Based on the number of counts per pixel, we ex-
pect to achieve a S/N ratio of about 250 in the extracted
spectrum. Data from the red arm of UVES can be rela-
tively challenging to reduce because of interference fringes
and also the non-uniform response of the MIT CCD. We
expect the various algorithms to differ mainly in resid-
ual noise, small-scale deviations due to detector defects
and cosmic ray spikes, and large-scale (tens of pixels) de-
viations due to fringing and CCD structure. Treatment
of these maladies all depend directly on the quality of
slit function reconstruction. In order to assess the rela-
tive noise performance of each reduction procedure, we
compute residuals with respect to spectra extracted by
REDUCE, and we compare noise in the REDUCE spectrum
with expectations based on photon counting statistics. To
facilitate intercomparison, we map all continua onto the
REDUCE output using a fourth order polynomial scaling.

At the time of this analysis we did not have a
VLT/UVES pipeline reduction or a complete set of cal-
ibration data for HD 217522. Instead we examined the
3860 Å region of a blue spectrum of a metal-poor star
CS 22892-052 ([Fe/H] = −3.1) taken without an image
slicer during UVES commissioning. We selected this star
because it illustrates well the impact reduction procedures
have on our ability to achieve scientific goals of current in-
terest. Measurements of thorium and uranium abundance
allow an accurate estimate of the age of CS 22892-052 (see
Cayrel et al. 2001 for details). Unfortunately only the U ii

3859.6 Å line can be used, since the star is too hot to
contain detectable amounts of U i.

9.1. Comparison with MIDAS/UVES context

Figure 10 compares output from REDUCE and the ESO
MIDAS/UVES package. Reductions with the latest ver-
sion of MIDAS/UVES were provided by Vanessa Hill
(ESO). In order to achieve robust automatic extrac-
tion, the MIDAS/UVES context uses an analytical fit
(Gaussian) to the spatial profile. Another significant dif-
ference is that MIDAS/UVES uses an extracted spectrum
of the mean flat field image to correct sensitivity variations
in 1D extracted spectra, whereas REDUCE applies 2D sensi-
tivity corrections pixel-by-pixel. Bad pixels in the science
image complicate the MIDAS/UVES analysis, especially
in this case where the uranium line of interest sits in the
wing of a strong iron line. This particular spike is a bit

mysterious because it was present in 3 out of 4 science im-
ages with a different amplitude each time. The rejection
of such defects in REDUCE occurs naturally, as a byprod-
uct of the assumed regularity in the spatial profile. The
final spectrum is based on a fit of good pixels only. The
MIDAS and REDUCE spectra are comparable, except where
the echelle order is affected by a bad pixel. Proper treat-
ment of such artifacts may be important if the defect falls
on a critical spectral feature, as in the case of CS 22892-
052 (Fig. 10), where the estimate of uranium abundance
depends on the quality of data reduction.

9.2. Comparison with IRAF

Figure 8 compares REDUCE and IRAF extractions. Noise in
the difference between the two spectra is twice the level ex-
pected from Poisson statistics. The middle panel of Fig. 8
reveals that the IRAF reduction is noisier, while the bot-
tom panel shows large-scale deviations which turn out to
be associated with CCD structures similar to those shown
in Fig. 7.

9.3. Comparison with BERP

Figure 9 compares REDUCE and BERP extractions.
Algorithmic design similarities almost guarantee that the
packages will yield similar results. Indeed, after tuning
the parameter that controls smoothing of the BERP spatial
profile, we obtain virtually identical results, with residuals
smaller that the Poisson noise, confirming that practically
no additional noise is introduced by our reduction proce-
dures.

After this work was completed we discovered a paper
by Kinney et al. (1991) which describes an optimal extrac-
tion procedure developed for low-dispersion IUE spectra.
The paper discusses some of the same issues considered
here, but their procedure uses an analytical approxima-
tion (high-order polynomials in this case) to fit spatial pro-
files, as is done in the UVES pipeline and MIDAS/UVES
package.

10. Conclusions

We presented the latest version of our echelle reduction
package REDUCE, concentrating mainly on two novel
algorithms: clustering analysis used for detecting order lo-
cations and spatial/spectral decomposition used for opti-
mal extraction. The package incorporating these new al-
gorithms was tested using data from spectrographs fed
by fiber or image slicer and with prism or grating cross-
dispersers. The new procedures proved to be robust and
capable of achieving maximum signal-to-noise ratio. The
IDL package is easily ported to different platforms and
can be configured to handle new instruments by mod-
ifying information concentrated in a limited number of
instrument-specific routines.

Comparisons with results from other reduction pack-
ages demonstrates the superior ability of REDUCE to handle
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cosmic ray spikes and CCD defects and to compensate for
detector interference fringes.

Acknowledgements. We acknowledge the Kurt and Alice
Wallenberg Foundation which contributed the computer equip-
ment actively used in this project. We are also thankful to
E. Stempels, V. Hill and M. Mizuno-Wiedner who reduced
lots of data, some of which is used in this paper. NP would
like to thank S. Hubrig and P. Mittermayer for sharing their
HD 217522 and HD 166473 data. We would also like to thank
A.Kaufer for many useful comments which helped to improve
this paper.

References

Ballester, P., Modigliani, A., Boitquin, O., et al. 2000,
Messenger, 101, 31

Cayrel, R., Hill, V., Beers, T. C., et al. 2001, Nature, 409, 691
Cowley, C. R., Hubrig, S., Ryabchikova, T. A., et al. 2001,

A&A, 367, 939

D’Odorico, S., Cristiani, S., Dekker, H., et al. 2000, Proc. SPIE,
4005, 121

Goodrich, R. W., & Veilleux, S. 1988, PASP, 100, 1572
Hall, J. C., Fulton, E. E., Huenemoerder, D. P., Welty, A. D.,

& Neff, J. E. 1994, PASP, 106, 315
Hinkle, K., Wallace, L., Valenti, J. A., & Harmer, D. 2000,

Visible and Near Infrared Atlas of the Arcturus Spectrum
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111, 260
Mukai, K. 1990, PASP, 102, 183
Piskunov, N. 1995, CCD Spectroscopy Reduction package for

PCIPS Version 2.2
Ponz, D., Brinks, E., & D’Odorico, S. 1986, SPIE, 627, 707
Rossi, C., Lombardi, R., Gaudenzi, S., & De Bliase, G. A. 1985,

A&A, 143, 13
Tody, D. 1986, SPIE, 627, 733
Valenti, J. A. 1994, Ph.D. Thesis, Univ. California at Berkeley


