
Mon. Not. R. Astron. Soc. 409, 639–661 (2010) doi:10.1111/j.1365-2966.2010.17327.x

On the dynamics of planetesimals embedded in turbulent
protoplanetary discs

Richard P. Nelson� and Oliver Gressel�
Astronomy Unit, Queen Mary, University of London, Mile End Road, London E1 4NS

Accepted 2010 July 7. Received 2010 July 5; in original form 2010 April 29

ABSTRACT
Angular momentum transport and accretion in protoplanetary discs are generally believed to
be driven by magnetohydrodynamics (MHD) turbulence via the magnetorotational instability
(MRI). The dynamics of solid bodies embedded in such discs (dust grains, boulders, plan-
etesimals and planets) may be strongly affected by the turbulence, such that the formation
pathways for planetary systems are determined in part by the strength and spatial distribution
of the turbulent flow.

We examine the dynamics of planetesimals, with radii between 1 m and 10 km, embedded
in turbulent protoplanetary discs, using 3D MHD simulations. The planetesimals experience
gas drag and stochastic gravitational forces due to the turbulent disc. We use, and compare the
results from, local shearing box simulations and global models in this study.

The main aims of this work are to examine: the growth, and possible saturation, of the
velocity dispersion of embedded planetesimals as a function of their size and disc parameters;
the rate of radial migration and diffusion of planetesimals; the conditions under which the
results from shearing box and global simulations agree.

We find good agreement between local and global simulations when shearing boxes of
dimension 4H × 16H × 2H are used (H being the local scaleheight). The magnitude of the
density fluctuations obtained is sensitive to the box size, due to the excitation and propagation
of spiral density waves. This affects the stochastic forcing experienced by planetesimals. The
correlation time associated with the stochastic forcing is also found to be a function of the box
size and aspect ratio.

The equilibrium radial velocity dispersion, σ (vr), obtained depends on the radii, Rp, of
the planetesimals. Bodies with Rp = 50 m achieve the smallest value with σ (vr) � 20 m s−1.
Smaller bodies are tightly coupled to the gas, and boulders with Rp = 1 m attain a value of
σ (vr) similar to the turbulent velocity of the gas (∼100 m s−1). Equilibrium values of σ (vr) for
bodies larger than 100 m are not achieved in our simulations, but in all models we find rapid
growth of the velocity dispersion for planetesimals of size 1 and 10 km, such that σ (vr) ≥
160 m s−1 after a run time of 1200 orbits at a distance of 5 au from the central star. These values
are too large to allow for the runaway growth of planetesimals, and mutual collisions would
lead to catastrophic disruption. Radial migration due to gas drag is observed for bodies with
Rp � 1 m, and is only modestly affected by the turbulence. Larger bodies undergo a random
walk in their semimajor axes, leading to radial diffusion through the disc. For our fiducial disc
model, we estimate that radial diffusion across a distance of �2.5 au would occur for typical
planetesimals in a swarm located at 5 au over a disc lifetime of 5 Myr. Radial diffusion of this
magnitude appears to be inconsistent with Solar system constraints.

Our models show that fully developed magnetohydrodynamics (MHD) turbulence in pro-
toplanetary discs would have a destructive effect on embedded planetesimals. Relatively low
levels of turbulence are required for traditional models of planetesimal accretion to operate,
this being consistent with the existence of a dead zone in protoplanetary discs.

Key words: accretion, accretion discs – MHD – methods: numerical – planets and satellites:
formation – protoplanetary discs.

�E-mail: r.p.nelson@qmul.ac.uk (RPN); o.gressel@qmul.ac.uk (OG)

C© 2010 The Authors. Journal compilation C© 2010 RAS



640 R. P. Nelson and O. Gressel

1 IN T RO D U C T I O N

The dynamical and collisional evolution of planetesimals is a fun-
damental issue which needs to be understood if progress is to be
made in developing a theory of planetary system formation. Accord-
ing to the core accretion theory, a process which begins with the
collision and sticking of small dust grains within a protoplanetary
disc leads eventually to the formation of kilometre-sized planetes-
imals (Wetherill & Stewart 1993). Although alternative scenarios
have been put forward for planetesimal formation (Goldreich &
Ward 1973; Johansen et al. 2007), which avoid the requirement for
such large bodies to grow via simple two-body agglomeration pro-
cesses, the further growth of planetesimals into planetary embryos
and cores generally requires planetesimals themselves to accrete via
mutual collisions through a process of runaway growth, followed
by oligarchic growth (Ida & Makino 1993; Kokubo & Ida 1998).

Rapid runaway growth requires that the velocity dispersion of the
planetesimal swarm remains significantly smaller than the escape
velocity from the surfaces of the largest accreting planetesimals,
ensuring that gravitational focusing is important. For bodies of ra-
dius 10 km, and with internal densities �p � 2 g cm−3, the escape
velocity is 10 m s−1, and scales linearly with radius. Clearly this is
a stringent requirement, which is easily met within a self-stirring
planetesimal swarm whose size distribution is reasonably shallow,
but which may be difficult to satisfy in the presence of an external
source of stirring. One such source may be turbulence within the
protoplanetary disc. Planetary growth times which rely on mutual
collisions between planetesimals occurring at rates which are deter-
mined by the geometric cross-section are prohibitively long, leading
to estimated planetary growth times which are much in excess of
typical protostellar disc lifetimes (Haisch, Lada & Lada 2001).

A further constraint during the runaway growth phase is that
collisional velocities should be small enough to avoid catastrophic
disruption of planetesimals. For bodies in the 1–10 km size range,
for which self-gravity starts to become more important than mate-
rial strength in holding planetesimals together, collisions between
similar-sized bodies with impact speeds which are modestly in ex-
cess of the escape velocity will lead to breakup of the planetesimals
rather than accretion and growth. Indeed Benz & Asphaug (1999)
suggest that mutual collisions between 1 km sized bodies will result
in catastrophic disruption if the impact speeds exceed ∼20 m s−1,
depending on the material composition of the impactors. In a more
recent study, Stewart & Leinhardt (2009) suggest reduced impact
speeds of ∼10 m s−1 will be destructive. Once again, we see that
an external source of planetesimal stirring may prevent the rapid
growth of planetary mass bodies by the accretion of planetesimals.

The canonical mass accretion rate for T Tauri stars is
∼10−8 M� yr−1 (Sicilia-Aguilar et al. 2004). Such accretion rates
require a source of anomalous disc viscosity and angular momen-
tum transport to operate, generally thought to be turbulence. The
most likely source of disc turbulence is the magnetorotational in-
stability (MRI; Balbus & Hawley 1991) which has been shown to
develop into full non-linear magnetohydrodynamics (MHD) turbu-
lence in numerous studies, using both local shearing box simulations
(Hawley, Gammie & Balbus 1995) and global simulations
(Armitage 1998; Hawley 2001; Papaloizou & Nelson 2003). The
nature and saturation state of MHD turbulence generated by the
MRI is the subject of on-going study (Fromang & Papaloizou 2007;
Fromang et al. 2007). In this work, we use the dependence of the
turbulent stresses and density fluctuation amplitude on the strength
of the net component of the magnetic field to examine the evolution
of planetesimals in discs with different levels of turbulence. We

use simple disc models, which neglect non-ideal MHD effects and
vertical stratification. As such, this is the first in a series of papers
in which we examine how turbulence affects the dynamics of plan-
etesimals embedded in turbulent discs. Future papers will explore
the effects of vertical stratification and dead zones.

There have been numerous studies of planets embedded in turbu-
lent protoplanetary discs. Nelson & Papaloizou (2003) and Winters,
Balbus & Hawley (2003) examined the formation of gaps by Jovian
mass planets, and the migration torques exerted by the disc on the
planet. Nelson & Papaloizou (2004) performed global simulations
of low-mass planets embedded in turbulent discs. They showed
that such bodies are subject to fluctuating torques which should
induce stochastic migration, and suggested that this might provide
a means of mitigating against the rapid type I migration expected
to occur for low-mass planets (Ward 1997). Laughlin, Steinacker
& Adams (2004) published a similar study using analytical fits to
MHD simulations, and reached similar conclusions. Papaloizou,
Nelson & Snellgrove (2004) presented results from both global and
local shearing box simulations containing both high- and low-mass
planets, and showed good agreement between the simulation set-
ups for predicting the transition between linear and non-linear disc
response to the presence of an embedded planet. In a follow-up
paper, Nelson (2005) examined the orbital evolution of low-mass
embedded planets, showing that over simulations run times of �100
orbits, turbulence induces stochastic migration for planets in the
range 1–10 M⊕, and induces the growth of orbital eccentricity. In a
more recent work, Oishi, Mac Low & Menou (2007) examined the
stochastic forces experienced by planets in stratified disc models
with and without dead zones using shearing box simulations, and
Yang, Mac Low & Menou (2009) examined the orbital evolution of
swarms of test particles embedded in non-stratified turbulent discs.

A significant volume of related work has examined the influ-
ence of disc turbulence on embedded planets and planetesimals
using prescriptions or simple models for the effects of turbulence.
Johnson, Goodman & Menou (2006) developed a Fokker–Planck
description for the stochastic evolution of planets, and examined
the survival probabilities of distributions of planets subject to type
I migration and superposed stochastic migration. A similar study
has been published recently by Adams & Bloch (2009). Ogihara,
Ida & Morbidelli (2007) have used N-body simulations plus a pre-
scription for stochastic forcing to examine the effects of turbulence
on terrestrial planet formation. Ida, Guillot & Morbidelli (2008)
used a similar prescription of turbulent forcing and examined the
growth of eccentricity for planetesimals, exploring in particular the
possibility of reaching catastrophic disruption velocities. Adams,
Laughlin & Bloch (2008) and Rein & Papaloizou (2009) examined
the stability of mean motion resonances for pairs of planets embed-
ded in turbulent discs, and Baruteau & Lin (2010) have examined
the saturation of corotation torques in turbulent discs by means of
hydrodynamic simulations subject to turbulent stirring.

In this paper, we examine in detail the orbital evolution of plan-
etesimals of different size (ranging between 1 m and 10 km) em-
bedded in turbulent disc models by means of 3D MHD simulations.
A key issue that we explore is the set of conditions and numerical
parameters that provide good agreement between local shearing box
simulations and global simulations. We find that it is possible to ob-
tain good agreement between these two numerical set-ups, provided
that the shearing box dimensions are chosen appropriately. Other
important issues that we examine include the growth of the velocity
dispersion of embedded swarm of planetesimals, and the saturation
value of this velocity dispersion as a function of planetesimal size
due to a balance being achieved between gas drag and turbulent
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forcing. We explore the implications of our results for the efficiency
of runaway growth of planetary embryos, and the possibility that
planetesimals may enter a phase of catastrophic disruption through
mutual collisions. We also examine the rate at which planetesimals
migrate due to both gas drag induced radial drift (Weidenschilling
1977), and diffusion caused by the fluctuating gravitational field
of the turbulent disc. We examine under which conditions each of
these processes is dominant, and we explore the implications of our
results for the radial drift of planetesimals in the solar nebula and
limits that might be placed on the magnitude of turbulent fluctua-
tions which were present during the early phases of Solar system
formation.

This paper is organized as follows. In Section 2, we describe
the numerical set-up and the parameters of the disc models. In
Section 3 we present our results. In Section 4 we discuss our work
in the context of previous work and draw our conclusions.

2 MOD EL D ESCRIPTION

We perform self-consistent simulations of hydromagnetic turbu-
lence using two different set-ups: shearing box simulations which
represent a local patch of a protoplanetary disc; global disc models
which simulate a larger section of a protoplanetary disc and include
the full set of curvature terms in the equations of motion. A major
goal of this work is to compare the results of these two different
approaches.

A key question that needs to be addressed is for what dimensions
of the shearing box, in units of the local scaleheight H, do density
fluctuations created by the turbulence reach a converged amplitude
and spectrum, and do these match the results of global models. To
make the comparison as straightforward as possible, we neglect
vertical stratification and assume an isothermal equation of state.

In both configurations, the hydromagnetic turbulence is driven
via the non-linear development of the MRI. At present, the issue of
the saturated amplitude of MRI turbulence remains unresolved and
is a topic of active research (Fromang & Papaloizou 2007; Fromang
et al. 2007). In the absence of a better alternative, we therefore
adopt a practical perspective and impose a net vertical or azimuthal
flux, for which numerical convergence can be obtained (Davis,
Stone & Pessah 2010). Neglecting the dependence on the magnetic
Prandtl number (Lesur & Longaretti 2007), we furthermore restrict
ourselves to the case of ideal MHD. This approach is justified by
the observed correlation between the strength of the turbulence
and the amplitude of the resulting density fluctuations (Yang et al.
2009). This means that we regard the strength of the imposed field
as a control parameter which can be tuned to vary the turbulence
amplitude in the local and global context. The global cylindrical
disc models are computed with a modified version of the original
finite difference code NIRVANA (Ziegler & Yorke 1997). For the local
shearing box models, we make use of the newly developed second-
order Godunov code NIRVANA-III (Ziegler 2004, 2008).

2.1 Numerical methods – local model

For our standard model, we adopt a box size1 of 4 × 16 × 2 pressure
scaleheights H at a resolution of 32 grid points per H. Boundary
conditions are periodic in the azimuthal (y) and vertical (z), and
sheared-periodic in the radial (x) direction. The initial net vertical
magnetic field corresponds to a plasma parameter β � 6000 (i.e.

1 See Section 3.3 for a discussion on the effect of the box size.

the ratio of thermal to magnetic pressure), resulting in a typical
saturation level α � 0.05 of the turbulence, where α is the effective
viscosity parameter (Shakura & Syunyaev 1973).

Because the gas drag forces acting on massive particles depend
on the actual physical value of the gas density, we have to prescribe
a set of conversion factors to link our model to a representative
protoplanetary disc. We chose a fiducial radius R0 = 5 au, and a
geometric disc thickness of H/R = 0.05 at R = 1 au. Note that this
aspect ratio is scaled with R1/4 to be consistent with the Hayashi
minimum mass solar nebula (MMSN; Hayashi 1981), yielding a
value of �0.075 at 5 au. Furthermore, we chose a slightly higher
average mass density than in this model to yield a column density
� = 160 g cm−2 and sound speed cs = 1 km s−1 comparable to the
global simulations.

For the local model, we evolve the following set of non-linear
partial differential equations:

∂t � +∇ · (�v) = 0,

∂t (�v) +∇ ·
[
�vv +

(
p + B2

2μ

)
I − BB

μ

]
=−2�� ẑ× (v + q�x ŷ)

∂tB − ∇ × (v × B) = 0, (1)

comprising the standard formulation of ideal MHD in the shearing
box approximation, and where we have assumed an isothermal
equation of state p = �c2

s and neglected the effects of stratification.
The two momentum source terms are the Coriolis force −2�ẑ×v in
the locally corotating frame, and the tidal term 2q�2x x̂, with shear-
parameter q = 3/2, describing the linearized effect of the Keplerian
rotation.2 Care has been taken in implementing the source terms to
minimize the error in the epicyclic mode energy (Gressel & Ziegler
2007), albeit not to the extent where it is conserved to machine
accuracy (Stone & Gardiner 2010).

2.1.1 Numerical scheme and orbital advection

As has been recently demonstrated by Balsara & Meyer (2010), the
adequate modelling of the MRI with finite volume codes depends
on the reconstruction strategy used and, in particular, on the abil-
ity of the Riemann solver to capture the Alfvén mode. To improve
the treatment of discontinuities in the Godunov scheme, we there-
fore extended NIRVANA-III with the Harten–Lax–van Leer Discontinu-
ities (HLLD) approximate Riemann solver proposed by Miyoshi &
Kusano (2005).

In accordance with its finite volume approach, the NIRVANA-III

code evaluates the components of the electromotive force (EMF) at
cell interfaces. Since the discretization of the constrained transport
algorithm intrinsically requires edge-aligned EMFs, some sort of in-
terpolation is required. In its original form, NIRVANA-III implements
the arithmetic average proposed by Balsara & Spicer (1999). As
discussed in section 3.2 of Gardiner & Stone (2005), this approach
however lacks the required directional biasing to guarantee the sta-
bility of the numerical scheme. It has further been demonstrated by
Flock et al. (2010) that this can lead to artificial growth of instabil-
ities in the context of net-flux MRI, and we have reproduced this
result. To resolve this issue, we have successfully implemented and
tested the upwind reconstruction procedure of Gardiner & Stone
(2005).

Following the long-term evolution of a shearing flow in boxes
of substantial radial extent puts high demands on computational

2 The variable x = R − R0 is the radial displacement from the box centre.
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resources. For a Keplerian rotation profile, the background flow
becomes super-sonic for Lx > 4/3H. This implies that for increas-
ingly larger boxes the numerical time-step, defined by the Courant
condition, becomes dominated by the unperturbed shear profile. To
circumvent this undesirable constraint, it becomes mandatory to
split-off the transport term due to the background profile.

The shear transport is usually implemented in terms of an inter-
polation step. This was first introduced in cylindrical geometry and
termed FARGO by Masset (2000). Later, the method was adopted
to the local shearing box model by Gammie (2001).

A rather intricate extension for the induction equation that re-
quires mapping of the magnetic field components has been pro-
posed by Johnson, Guan & Gammie (2008). We here follow the
(much simpler) constrained transport approach proposed by Stone
& Gardiner (2010), which by construction preserves the solenoidal
constraint.

For our implementation of the orbital advection scheme, we
operator-split the advection step from the Runge–Kutta time in-
tegration of the remaining terms. For the interpolation of the fluid
variables, we make use of the high-order Fourier scheme [shear
advection by Fourier interpolation (SAFI)] described in appendix
B of Johansen, Youdin & Klahr (2009).

We similarly apply SAFI to obtain the non-integer part of the
line-integrals which contribute the circulation of the electric fields
entering the induction equation (cf. equations 61 and 62 in Stone &
Gardiner 2010). The treatment of the magnetic source term in the
total energy equation can be successfully avoided if the magnetic
energy is removed from the total energy during the interpolation.
The implementation has been tested with the advection of a field
loop (Gardiner & Stone 2008), and the exact wave solution given
in Balbus & Hawley (2006).

Using SAFI rather than slope-limited linear interpolation, effi-
ciently reduces the dissipation due to the transport step, and more-
over its dependence on position (see Johansen et al. 2009). In fact,
the scheme adds so little dissipation that the total variation dimin-
ishing (TVD) requirement might be violated. To formally make the
interpolation TVD, we therefore discard the Fourier mode corre-
sponding to the Nyquist frequency.

2.1.2 Particle dynamics

In this paper, we restrict ourselves to the study of how disc turbu-
lence affects embedded particle populations. Neglecting their back
reaction on the flow, particles are hence treated as passive test bod-
ies which do not interact mutually either through physical collisions
or through gravity. Under these assumptions, we ignore the possi-
bility of increasing the velocity dispersion of particles via mutual
gravitational scattering. While this effect might become important
for ∼102 km-sized objects, it simply adds to the external stirring.
Physical collisions between planetesimals, however, can provide a
source of damping. This effect was considered by Ida et al. (2008),
and was found to be important in determining the equilibrium ve-
locity dispersion only for bodies with size <1 km, and so we do not
consider this effect in this paper. Moreover, because the particles
cannot exert drag forces on the gas, our approach excludes collective
effects such as the streaming instability (Youdin & Goodman 2005),
which is a focus of current numerical studies (Youdin & Johansen
2007; Balsara et al. 2009; Bai & Stone 2010; Miniati 2010).

We include different species of particles to quantify various as-
pects of the flow. First, massless tracer particles (which instanta-
neously follow the gas velocity) measure the Lagrangian diffusion

of the flow. This is relevant for small dust grains which are tightly
coupled to the gas. Secondly, we include particles representing plan-
etesimals. These particles interact with the flow via the gravitational
potential produced by the gas density, and through the aerodynamic
drag force. The relative importance of these effects is expected to
change for planetesimals in the size range 1 m to 10 km, which are
the subject of this study. Finally, for the purpose of comparison, and
as a proxy for larger objects (e.g. small protoplanets), we include
swarms of particles which experience gas gravity but are not subject
to an aerodynamic drag force. With the exception of the tracers, all
particles are subject to the local dynamics, i.e. they experience the
Coriolis force in the rotating frame and the tidal force stemming
from the local expansion of the Keplerian rotation profile. As a con-
sequence, planetesimals generally perform epicyclic oscillations of
fluctuating amplitude, around a stochastically migrating guiding
centre.

2.2 Numerical method – global model

In the global simulations, we solve essentially the same set of equa-
tions for ideal MHD as described in Section 2.1 for the shearing
box runs, except that we adopt cylindrical coordinates (r, φ, z) (see
Nelson 2005 for a full description). The simulations are performed
in a rotating frame with angular frequency equal to the Keplerian
frequency at the midpoint of the radial computational domain. We
use a locally isothermal equation of state

P (r) = cs(r)2 �, (2)

where cs(r) denotes the sound speed which is specified as a fixed
function of r. The models investigated may be described as cylin-
drical discs (e.g. Hawley 2001), in which the gravitational potential
is taken to depend on r alone. Thus, the cylindrical disc models do
not include a full treatment of the disc vertical structure. Models of
this type are employed due to the high computational overhead that
would be required to fully resolve the disc vertical structure of a
stratified model.

The global simulations presented in this paper were performed
using an older version of NIRVANA, which uses an algorithm very
similar to the ZEUS code to solve the equations of ideal MHD (Stone
& Norman 1992; Ziegler & Yorke 1997). This scheme uses operator
splitting, dividing the governing equations into source terms and
transport terms. Advection is performed using the second-order
monotonic transport scheme (van Leer 1977), and the magnetic
field is evolved using the Method of Characteristics Constrained
Transport (Hawley & Stone 1995).

2.2.1 Gas disc model

The main aim of this paper is to examine the orbital evolution
of planetesimals and smaller bodies (boulders) in turbulent discs,
where the disc turbulence has achieved a well-defined steady state.
Another aim is to compare local shearing box runs with global
simulations. To achieve these aims, most of the global disc models
were chosen to have a relatively narrow radial extent, and azimuthal
domains running between 0 ≤ φ ≤ π/2. The turbulent stresses
generated within a global disc lead to significant changes in the
radial density distribution, such that the properties of the disc deviate
substantially from a statistical steady state over runs times of 100 s
of orbits (Papaloizou & Nelson 2003). In order to overcome this,
we have introduced an additional equation to be solved alongside
equations (1) in the global simulations, whose purpose is to maintain
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a roughly constant surface density profile during the runs:

d�(t)

dt
= −�(t) − �0

τm
. (3)

Here �(t) is the density at each spatial location in the disc at time t,
�0 is the initial density defined at each location in the disc and τm is
the characteristic time on which the local perturbed density evolves
back towards its original value. Clearly, if τm is shorter than any
relevant local dynamical time in the disc, then perturbations will
be damped very quickly and the disc will not be able to achieve
a turbulent state. Similarly, if τm is much longer than the longest
(viscous) evolution time in the disc, the global density profile will be
able to evolve to be very different from the initial one. By choosing
τm to be intermediate between these two extremes, we find that
our global disc models are able to develop a well-defined turbulent
state, in which the turbulence is able to maintain an approximate
statistical steady state over long time-scales (>103 orbits). We have
found that τm = 50 orbits measured at the radial midpoint of the
disc model provides a model with the desired properties.

A possible alternative to solving equation (3) would be to feed
in mass at the outer radial boundary at the requisite rate. Such an
approach works well as a means of generating a steady disc when
the disc is laminar and employs the α-model for viscosity (Masset
2002). In a turbulent disc, where there is substantial temporal and
spatial variation in the viscous stress, however, such an approach
may not be effective at maintaining a well-defined surface density
profile.

2.2.2 Initial and boundary conditions

Each global model has a value for the inner and outer radii of the
computational domain, rin and rout, a value for the height of the
upper and lower ‘surfaces’ of the disc, Zmin and Zmax, and minimum
and maximum values of the azimuthal angle, φmin and φmax. These
values are tabulated in Table 1, along with some of the physical
parameters described below. The resolution used in each simulation
covering π/2 in azimuth was (Nr, Nφ , Nz) = (160, 320, 40). For the
model covering 2π in azimuth Nφ = 1280. This corresponds to 10
cells per mean scaleheight in the radial and azimuthal directions, and
20 cells per scaleheight in the vertical domain. When considering
the behaviour of the correlation time for the fluctuating torques in
Section 3.3.1, we also ran models with double and quadruple the
resolution in the radial and azimuthal directions.

The unit of length in our simulations is taken to be 2 au, such
that a radial distance of r = 2.5 in computational units corresponds
to 5 au. The unit of mass is assumed to be the solar mass. When
we discuss the temporal evolution of our models later in the paper,
we adopt a time unit which is equal to the orbital period at r = 2.5
(equivalent to 5 au); this being the midpoint of our radial domain.

The disc models we adopt are similar locally to the MMSN model
(Hayashi 1981) at a distance of 5 au from the star. All models have
a constant aspect ratio H/r, and all but one model has H/r = 0.05.

Model G5 has H/r = 0.075 for the purpose of comparing directly
with the local shearing box models (where this value of H/r was
used). Initially, the density is constant, such that the surface density
� = 150 g cm−3.

The initial magnetic field in the global runs is purely toroidal,
with the local field strength being determined from the local plasma
β parameter (β = Pgas/Pmag). The value of β used in each run is
tabulated in Table 1. The field is introduced at all locations in the
disc, except near the radial boundaries where the field is set to zero
for r − rin < 0.1 and rout − r < 0.1. The initial disc velocity is
determined according to

vφ = r

√√√√GM∗
r3

[
1 −

(
H

r

)2
]
, (4)

where M� is the mass of the central star, with the other velocity
components being set to zero. Prior to a run being initiated, however,
all velocity components are seeded with random noise with an
amplitude equal to 5 per cent of the local sound speed.

Each disc model described in Table 1 was evolved until the tur-
bulence reached a quasi-steady state before the planetesimals were
inserted. Most runs included planetesimals of size 10 m, 100 m,
1 km and 10 km, with each size being represented by 25 particles.
The planetesimals were distributed randomly in a narrow annulus
centred on the computational radius r = 2.5 (equivalent to 5 au
in physical units) of width �r = 0.2, with their initial velocities
calculated such that they are on circular orbits under the influence
of the instantaneous gravitational potential of the central star and
turbulent disc.

We adopt periodic boundary conditions at the vertical and az-
imuthal boundaries, and reflecting boundary conditions at the ra-
dial boundaries. Furthermore, we use wave damping boundary con-
ditions in the vicinity of the radial boundaries using the scheme
described in de Val-Borro et al. (2006). This scheme relaxes the
velocity and density near the boundaries towards their initial values
on a time-scale equal to 10 per cent of the local orbital period.

2.3 Gravitational forces

Both the local and the global models calculate the gravitational po-
tential of the gas at the position of the particles via direct summation.
This is computationally favourable as long as one is only interested
in a relatively small number of particles. Since we do not consider
collective effects, an ensemble of a few tens of members is usually
sufficient to reasonably determine the time-averaged distribution of
their positions and velocities.

For the integration of the gravitational force, the mass contained
within a grid cell is treated as a point source located at the cell centre.
To avoid artefacts due to close encounters, we apply a common
smoothing length formalism with a parameter b = (δ2

x + δ2
y)

1/2

equal to the diagonal across the cell.

Table 1. Global simulation parameters and results.

Simulation rin/rout φmax Zmin/Zmax H/r β 〈α〉 〈δ�/�〉 〈δ�/�〉 Cσ (vr)/(cs × 10−3) Cσ (�a)/(10−4)

G0/G1 1.5/3.5 π/2 ±0.125 0.05 50 0.035 0.143 0.109 8.87 ± 0.50 7.92 ± 0.69
G2 1.5/3.5 2π ±0.125 0.05 50 0.040 0.159 0.124 8.20 ± 0.32 12.20 ± 0.56
G3 1.5/3.5 π/2 ±0.125 0.05 200 0.017 0.101 0.088 8.18 ± 0.41 7.17 ± 0.39
G4 1.5/3.5 π/2 ±0.125 0.05 12.5 0.105 0.266 0.150 11.30 ± 0.70 10.00 ± 0.10
G5 1.0/4.0 π/2 ±0.187 0.075 50 0.034 0.126 0.094 4.69 ± 0.21 7.65 ± 0.67

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 409, 639–661



644 R. P. Nelson and O. Gressel

Figure 1. Convergence study regarding the computation of the gravitational
force via direct summation; the convergence order is approximately 3/2.

As can be seen in fig. 2 of Heinemann & Papaloizou (2009b), the
turbulence driven by long-wavelength MRI modes leads to the for-
mation of strong density waves, which develop very little structure
along the vertical direction. Accordingly, we neglect the vertical
component of the forces and adopt a cylindrical description where
the gravity now only depends on the vertically integrated column
density. This approach greatly reduces the computational demand
and is consistent with neglecting the vertical density stratification.
As we will see in Section 3.3, this 2D treatment enhances the gravity
forces by a factor of roughly 2.

When considering local shearing box simulations in particular,
a question that needs to be answered is how large a shearing box
is required before the gravitational forces from a turbulent disc are
converged. In Fig. 1, we plot the relative error of the gravity force
when integrating over spheres with increasing radius. We see that,
for values accurate at the per cent level, one requires a sphere of
influence with a radius of about 10 pressure scaleheights. As ex-
pected, forces in the azimuthal direction are affected more strongly
by long-range contributions. Because the net effect is determined by
density fluctuations, the convergence is weaker than the r−2 depen-
dence for the Newtonian gravity. We consequently find a smaller
convergence order of about 3/2. In our local simulations, we adopt
a sphere (cylinder) with rcl = 16H, within which we compute the
gravitational acceleration on a planetesimal, and suitably extend
the domain by mirroring ghost domains according to the sheared
periodicity.

In the global simulations the gravitational field is computed by
summing over all grid cells. Most simulations were run using an
azimuthal domain of π/2, although the planetesimal orbits cover the
full 2π domain. When calculating the gravitational field experienced
by the planetesimals, additional copies of the disc, each shifted by
nπ/2, where n ∈ {1, 2, 3}, are used to mimic a disc which covers
the full 2π in azimuth. One run with a full 2π azimuthal domain
was run to check that the above procedure gives accurate results.

2.4 Gas drag

For the gas drag, we use the usual formulae for the Stokes and Ep-
stein regimes (Weidenschilling 1977; Rafikov 2004). In the Epstein
regime, the drag force is given by

Fdrag = (vg − vp) τ−1
s , (5)

with the stopping time

τs = �pRp

�cs
, (6)

where Rp is the physical radius of the planetesimal, � is the gas
density at the position of the planetesimal, �p is the internal density
of the planetesimal, vp is the planetesimal velocity and vg is the gas
velocity. In the Stokes regime it may be written

Fdrag = 1

2
CDπR2

p� |vp − vg| (vp − vg), (7)

where CD is the drag coefficient, which takes the values

CD =
⎧⎨
⎩

24. R−1
e Re < 1

24. R−0.6
e 1 < Re ≤ 800

0.44 Re > 800,

(8)

where Re is the Reynolds number of the flow around the planetesi-
mals, defined by

Re = 2Rpvpg/νp, (9)

where vpg = |vp − vg|, and the molecular viscosity of the flow
around the planetesimal is given by

νp = λcs/3 (10)

in most of the global simulations we have performed. It should be
noted that in the local simulations, however, the molecular viscosity
was defined by

νp = λcs/2, (11)

so we have run one global model (G5) adopting this value. The
molecular mean-free path λ = (nσH2 )−1, where n = �/(μmH) is the
number density of particles, μ is the mean molecular weight, and
mH is the mass of the hydrogen atom. All but one global simulation
adopted the assumption that the disc gas is composed entirely of
molecular hydrogen, giving μ = 2. The local shearing box models
adopted a value of μ = 2.4, so we have run one global model (G5)
using this value in order to provide a direct comparison between
local and global models. We adopt a value of σH2 = 10−15 cm2 for
the collision cross-section of molecular hydrogen (Rafikov 2004).
Trilinear interpolation is used to obtain the gas density and velocity
at the position of each planetesimal.

The time integration of the particle motion in the shearing box
simulations was performed as follows. Because the gas drag rela-
tions are of the form vα in the relative velocity v = |vg − vp|, the
update can be performed analytically. In the case α = 1, the relevant
time-scale ω−1 is just the classical stopping time, and the decay is
exponential. The update from time tn to time tn+1 with time-step δt
can then be written as

vn+1 = vn e−ω δt . (12)

For α �= 1, we obtain power-law solutions for the damping of the
relative velocity, which can be expressed as

vn+1 = [
v1−α

n (1 + (α − 1) ω̃ δt)
] 1

1−α , (13)

where ω̃−1 is now a generalized ‘stopping time’ defined by ω̃ =
fdr v

−1, with f dr the specific drag force acting on the particle.
In the global simulations, the particles were evolved using a fifth-

order Runge–Kutta scheme (Press et al. 1996).

3 R ESULTS

We organize the discussion of our results by first describing the
evolution of the disc models. We then describe the evolution of
the velocity dispersion (or equivalently eccentricity) of embedded
planetesimals, followed by a discussion of their migration through
changes in the semimajor axes.
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3.1 Hydromagnetic turbulence – local model

Restricting one’s consideration to a local approach, one might
naı̈vely think that a relatively small box should suffice to capture
the relevant dynamics (see Regev & Umurhan 2008, for a general
discussion on limitations of the local approximation). As can be
seen in Fig. 2, this notion is supported by looking at the turbulent
stresses created by the saturated MHD turbulence. Taken as the
only criterion, one arrives at the conclusion that box sizes of � 4H

are sufficient to study the local stirring of particles – but this is
misleading as the gravitational torques acting on the planetesimals
are strongly affected by spiral density waves, which arise as a sec-
ondary feature of the vigorously driven turbulence in a shearing
background.

In a series of two papers, Heinemann & Papaloizou (2009a,b)
study the mechanisms by which spiral density waves are excited
in a differentially rotating fluid. One important conclusion of their
work is that a minimum azimuthal extent Ly � 6H is required
to properly capture the dynamics of spiral waves. This is exactly
what we see when looking at the autocorrelation function (ACF) of
the vertically integrated density, as plotted in Fig. 3. Here the thick
black line indicates the contour where the correlation falls off to e−1,
and we see that density structures are predominantly trailing waves
with an azimuthal extent of about six pressure scaleheights. The
aspect ratio of the approximate ellipse is about one-sixth, indicating
that convergence in the radial direction should be obtained much
earlier (cf. right-hand panel of Fig. 8).

Returning to Fig. 2, we see that this requirement is reflected
in the relative rms density fluctuations 〈δ�/�〉 measured in the

Figure 2. Box size-dependence of key indicators characterizing the hydro-
magnetic turbulence: while both the Reynolds and Maxwell contributions
to the turbulent stress are well converged for azimuthal box sizes above
Ly � 4H , the effected density waves are clearly suppressed in too small
boxes. Converged values for the relative density fluctuation can only be
obtained for Ly � 8H . This is directly reflected in the gravitational torques
acting on the particles (cf. Fig. 8).

Figure 3. 2D ACF of the vertically integrated gas density, computed from
six uncorrelated snapshots of a simulation with box size 4H × 16H × 2H.
The thick black contour indicates a value of e−1 while the thick grey line
marks the first zero-crossing.

saturated turbulent state (uppermost curve in Fig. 2). Increasing
the box size from 2H to 8H results in an increase of ∼75 per
cent in the relative rms fluctuations. This is considerably larger
than the ∼25 per cent increase found by Yang et al. (2009), who
performed a similar study. As the authors themselves mention, even
this not particularly dramatic effect seems to strongly affect particle
stirring. This can be understood when taking into account the central
finding of the simulations undertaken in Heinemann & Papaloizou
(2009b), namely that spiral density waves quickly grow into the
non-linear regime where they develop steep shock-like features. It
seems natural that the resulting intermittent density structure creates
highly fluctuating torques, gravitationally enhancing the turbulent
velocity dispersion of embedded planetesimals. We examine this
issue in more detail in Section 3.3.

3.2 Hydromagnetic turbulence – global models

Prior to inserting the planetesimals in the global disc models, we
allow the MRI to develop into quasi-steady non-linear MHD tur-
bulence, with well-defined volume-averaged stresses operating. An
example of the time history of the Maxwell, Reynolds and total
volume-averaged stress (taken from model G0/G1) is presented in
Fig. 4, and the total stress generated in each of the models as a
function of time is shown in Fig. 5. It is clear that the models have

Figure 4. Contributions of the Reynolds (lower) and Maxwell (middle line)
stresses to the effective α parameter (upper line) versus time for model G1.

Figure 5. Evolution for the total α value for the models G1, G3, G4 and G5
described in Table 1.
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evolved to a quasi-steady state. The turbulence generates a distri-
bution of density and surface density fluctuations which are well
fitted by Gaussian distributions. The computed standard deviations
for these Gaussian fits (which we denote as 〈δ�/�〉 and 〈δ�/�〉)
are tabulated in Table 1 for each disc model, along with the time-
averaged stress parameter α. As can be seen from Table 1, our
models generate α values in the range 0.017 ≤ α ≤ 0.101, with
corresponding rms values for 〈δ�/�〉 in the range 0.101 ≤ 〈δ�/�〉
≤ 0.266.

In terms of physical parameters, the global model which is most
similar to the shearing box simulation is run G5. We see that α �
0.05 in Fig. 2 for the shearing box simulation, whereas α = 0.035
for model G5 because of the differing magnetic field topologies and
strengths. The density fluctuations for the shearing box model give
〈δ�/�〉 = 0.17, whereas 〈δ�/�〉 = 0.13 for model G5.

In Section 3.1, it was shown that the two-point correlation func-
tion for the density field obtained in local shearing box simulations
was highly anisotropic, with structure in the azimuthal direction
being stretched by a factor of ∼6 relative to the radial direction. We
plot the corresponding two-point correlation function for model G1
in Fig. 6. It is very similar to that shown in Fig. 3 for the shear-
ing box run, indicating strong similarities in the density structures
obtained in local and global simulations.

3.3 Gravitational torques versus shearing box size

To illustrate the strong dependence of the disc gravity on the domain
size in local simulations, we performed sets of runs with varying
radial and azimuthal extents of the box. As a measure of the mag-
nitude of the stirring, we record time series of gravitational torques
at fixed positions and compute the width of the resulting distribu-
tion function. This is exemplified in Fig. 7, where we see that, only
for large-enough boxes, the torques are consistent with a normal

Figure 6. Contours of the two-point correlation of the surface density av-
eraged over six snapshot from model G1. The heavy contours represent the
e−1, and the zero level is represented by the grey line.

Figure 7. Time-averaged distribution of the gravitational torques acting on
a set of particles. Left: small box, the distribution shows excess of both
large and small values (as typical for intermittency). Right: large box, the
histogram is well represented by a normal distribution centred around zero
and with a standard deviation of 1.48 × 108 cm2 s−2.

Figure 8. Left: specific gravitational torques versus box size as determined
by fitting a normal distribution (cf. Fig. 7). Gravitational torques computed
via the column density (‘2D force’) are consistently enhanced by a factor of
roughly 2, as expected from a simple geometric argument. Right: isolation
of the effects due to variation in Lx, and Ly, respectively.

distribution. Gaussian fluctuations, in turn, warrant stochastic mod-
elling as considered by Youdin & Lithwick (2007), for example, for
the case of interactions via gas drag.

The intermittent distribution seen in the left-hand panel of Fig. 7
is likely related to recurring channel modes and the spiky nature of
time series for the turbulent stresses, which occurs when going to
too narrow boxes in the radial direction. This phenomenon, which
is related to the truncation of the dominant parasitic modes, was
first observed by Bodo et al. (2008), and we can confirm this result
with our simulations.

As can be seen in the left-hand panel of Fig. 8, the torques show
a pronounced dependence on the box size, spanning almost one
order of magnitude. Even for L � 8H , a weak trend towards higher
torques is visible, albeit remaining within the error bounds.

As already discussed in Section 2.3, using the column density for
computing forces consistently enhances the torques by a constant
geometric factor. For a fixed vertical extent Lz, the results can be
corrected accordingly.

As expected from the shape of the ACF in Fig. 3 and the ar-
guments given in Heinemann & Papaloizou (2009a), the observed
dependence on the box size is primarily a dependence on Ly. This
is illustrated in the right-hand panel of Fig. 8, where we plot the
respective dependence on Lx and Ly separately.

3.3.1 Torque correlation time

In addition to examining the dependence of gravitational forces
on the box size, it is also important to consider the influence of
the box size on the correlation time associated with the stochastic
gravitational forces experienced by embedded bodies. A key issue
here is whether the periodicity of the shearing box, which allows
for the possibility of waves in the flow to propagate radially past
an embedded planetesimal on multiple occasions prior to damping,
combined with advection due to the background shear flow, can
modify the recurrence time of the temporally varying gravitational
field.

In the previous section, we discussed the value of the standard
deviation of the stochastic torques obtained for runs with different
box sizes. Using the time series for the stochastic torques obtained
from these simulations, we can calculate the ACF for the torques as
a function of box parameters. A selection of the ACFs we obtained
are plotted in Fig. 9.
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Figure 9. Box size-dependence of the torque autocorrelation. Left and centre: best fits according to equation (14) (solid black line) for a small and large box,
respectively. The torque ACFs (dark grey lines) are measured at a fixed position, and error intervals (shaded areas) are estimated from considering sub-intervals
in time. The first and second zero-crossing are indicated by triangles. Right: comparison between local models and the global run G1 applying comparable
spatial resolution. Excellent agreement is obtained if a large enough box-size is chosen.

In the left-hand panel of Fig. 9, we show the torque ACF for a
box with size 2H × 8H in the horizontal direction. The plot can be
directly compared to fig. 15 in Yang et al. (2009), and the results are
very similar. The position of the first and second zero-crossing and
the relative amplitude of the negative part of the ACF are in good
agreement. Yang et al. have speculated that the observed undershoot
may be responsible for reducing the diffusion coefficient. While this
might in fact be the case, we suspect that the observed feature is
probably an artefact due to the periodic boundary conditions, limited
box size and aspect ratio.

The sinusoidal modulation of the signal in the ACF is consistent
with periodicity being introduced into the temporal evolution of
the torques caused by density waves traversing the box in the ra-
dial direction multiple times before they are dissipated. Looking at
animations of the column density, one can identify local density en-
hancements whenever two waves cross each other. These features,
which create strong torques locally, are more pronounced in smaller
boxes, and also at higher resolution (where the dissipation time is
somewhat enhanced). Studying a set of simulations, we found the
dependence on the box size and aspect ratio to be dominant, while
the trend with resolution is rather weak (∼30 per cent when increas-
ing the resolution by a factor of 3) – we hence focus on this issue.
To pursue a more quantitative analysis, we fit the computed ACFs
with the following model:

S�(τ ) = [(1 − a) + a cos(2π ω τ )] e−τ/τc , (14)

with three free parameters, namely a, indicating the relative strength
of the proposed sinusoidal feature, ω giving its period, and finally
the correlation time τ c, assumed to be common between the two
components.

For the sake of simplicity, we assume that there exists only one
wave-like mode and both components of the mix decay with the
same characteristic time. While more elaborate fits (e.g. with sep-
arate decay times) produce slightly better agreement, we found no
systematic trend in this dependence. We therefore refrain from the
associated further complication.

As one can see in the left-hand and centre panels of Fig. 9, the
model produces reasonable fits for the given data. For the small and
large boxes, we infer relative amplitudes of the cosine-like feature

of ∼90 and ∼25 per cent, respectively. This illustrates the trend with
box size at a fixed aspect ratio. Contrary to our own expectation,
the periodicity is not simply related to the radial extent of the box.
This has been found studying a set of simulations, keeping Ly = 8H
fixed and progressively increasing Lx. Even at Lx = 16H, the ACF
remains unchanged and is very similar to the one in the left-hand
panel of Fig. 9. It appears instead that changing both the box size
and aspect ratio leads to changes in the torque correlation time, as
illustrated in the centre panel of Fig. 9 for a run with box dimensions
4H × 16H × 2H. The implication appears to be that the periodicity
introduced into the run of torques versus time, and hence into the
ACF, results from a combination of wave propagation in radius and
advection in the azimuthal direction due to the background shear.

Having identified a periodic feature, we can now make an un-
biased estimation of the temporal correlation of the fluctuating
torques. Although unexpected from a naı̈ve by-eye inspection, the
correlation times in the two cases only differ by about 50 per cent.
This shows that estimating the correlation time according to location
of the first zero crossing when the ACF has a significant sinusoidal
component can be misleading. We suggest that as an alternative the
correlation time be estimated using a fitting formula such as given
in equation (14). We see from the central panel of Fig. 9 that τ c =
0.32 for our large shearing box model.

Finally, in the right-hand panel of Fig. 9, we compare the torque
ACFs of our global simulation G1 with local simulations at compa-
rable resolution. We see that excellent agreement is obtained when
using large-enough boxes with an elongated aspect ratio, indicating
that the correlation time for the global simulation G1 τ c � 0.32.
Interestingly, the correlation time measured from the zero crossing
point for model G1 is τ c = 0.68, about a factor of 2 larger than we
infer from the fitting procedure described above.

In order to check the sensitivity of model G1 to numerical reso-
lution, we have re-run it at both double and quadruple resolutions
in the radial and azimuthal directions, giving (Nr × Nφ) equivalent
to (320 × 2560) and (640 × 5120), respectively, for a disc which
covers the full 2π in azimuth. These runs have 20 and 40 cells per
mean scaleheight in the radial and azimuthal directions. The ACFs
measured in each of these runs are very similar to that shown in the
right-hand panel of Fig. 9.
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3.4 Gravitational stirring versus distance in global models

As described in Section 3.2, the disc models listed in Table 1 were
evolved until they had reached a statistical steady state, prior to
inserting the planetesimals. Before discussing the evolution of plan-
etesimals which experience gas drag, we examine the length-scales
over which gravitational stirring of planetesimals by the turbulent
disc occurs.

We performed a series of simulations using the disc model G0,
where we defined a gravitational sphere of influence of varying
size, Rcut, around the planetesimals (which do not experience the
gas drag force in this particular simulation). We then examined
how the radius of this sphere of influence changed the evolution
of the planetesimal velocity dispersion. The sphere of influence in
each simulation is defined by a radius, Rcut, measured in units of
the local value of H. Gas within this sphere of influence exerts a
gravitational force on the planetesimal. At the edge of this sphere,
the contribution to the force is tapered to zero over a distance equal
to H using the hyperbolic tangent function. For example, a sphere
of influence equal to Rcut = 2H allows a full contribution to the disc
force within 1H, and beyond this the force contribution is tapered
to zero.

Fig. 10 shows the evolution of the rms of the radial velocity dis-
persion, σ (vr), as a function of Rcut, where σ (vr) is measured in
units of the sound speed. For this model, cs = 666 m s−1 at r = 2.5
(5 au). It is clear that contributions to the gravitational force occur
even beyond a cut-off radius Rcut = 8H, in agreement with the calcu-
lations presented in Section 3.3 for shearing boxes of different size.
The basic reason for this has already been explained: spiral waves
generated by the turbulence provide coherent structures which are
stretched in the azimuthal direction by the shear, and contribute sig-
nificantly to the stochastic gravitational forcing experienced by the
planetesimals. Clearly, computational domains are required which
are large enough to capture the gravitational stirring which occurs
on scales up to 8–10 scaleheights, at least in the azimuthal direction.

Examining the curve in Fig. 10 which corresponds to no cut-off
in the gravitational force, we see that the evolution of σ (vr) can
be reasonably well fitted as a random walk. The smooth solid line,
and the dashed lines, corresponds to the function Cσ

√
t − t0, with

Figure 10. Evolution of the radial velocity dispersion, σ (vr), in units of the
local sound speed, as a function of the size of the gravitational sphere of
influence described in the text.

Cσ = (8 ± 0.8) × 10−3, where the time is measured in orbits at r =
2.5 (5 au).

3.5 Evolution of the planetesimal velocity dispersion – local
model

After t0 = 20 orbits, when the turbulence driven by the MRI has
reached a quasi-steady-state, we disperse several swarms of test
particles into the flow. For easy reference, we label these sets as
‘G’ for the particles that experience the gas gravity only, ‘D’ for
particles subject to the gas drag-force, ‘G+D’ for the combined
effect and ‘T’ for massless tracer particles. While the sets G and T
consist of only one species, the sets D and G+D are composed of
10 species each. Particle radii are R = 1 m, 2 m, 5 m, 10 m, 20 m,
50 m, 0.1 km, 0.2 km, 0.5 km and 1 km, respectively. Eight particles
are used to represent each size. Due to the low number of particles,
we expect sampling errors of the order of 20–35 per cent. In reality,
these numbers have to be seen as upper limits. Because our fits are
based on time histories, the effective statistical basis is probably
somewhat larger than for any given instant in time. To roughly
quantify the uncertainty due to Poisson fluctuations, we performed
a lower resolved fiducial run with 100 particles for the gravity-only
set. Taking 12 subsets of eight particles each, we arrive at a standard
deviation of 23 per cent amongst the different realisations. For six
sets of 16 particles, this number is only slightly reduced to 18 per
cent, justifying the initial choice.

Depending on the particle size and the prevailing form of the
coupling, the time evolution of the various species is quite diverse.
Massless tracers and small particles with Rp � 10 m, whose dy-
namics are largely controlled by gas drag, essentially follow the
turbulent flow and describe a random walk. The larger G+D par-
ticles, as well as the G set, are coupled more weakly. For them
the orbital dynamics due to the Coriolis and tidal forces become
increasingly relevant. Viewed from a local perspective, the motion
of these particles can be described as epicyclic oscillations with a
modulated amplitude and a stochastically migrating guiding centre,
as seen in Fig. 11. Thus, the relevant properties of the particles’
motion can be described using two characteristic quantities: (i)
orbital eccentricity, or the amplitude of the epicyclic motion (or
equivalently the velocity dispersion relative to a circular Keplerian
orbit) and (ii) semimajor axis – the position of the guiding centre,
which evolves as a random walk as the particles migrate from their

Figure 11. Exemplified temporal evolution of the radial displacement �x
for a swarm of eight gravitationally excited particles. The initial positions
have been off-set for clarity as indicated by the dashed lines.
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Figure 12. Illustration of the algorithm used to measure the eccentricity
(lower panel) of a particle moving on epicyclic orbits via tracking the aphe-
lion and perihelion (upper panel).

initial locations. In this section we examine the eccentricity/velocity
dispersion, and consider the migration in Sections 3.7 and 3.8.2.

To separate the stochastic motion of the guiding centre from
the epicyclic oscillation, we box car-average the velocity applying
a filter-scale equivalent of the orbital frequency. We compute the
eccentricity of the particle’s orbit by tracing the position of the
aphelion and perihelion, respectively. From these, we compute

k = R0 + xapo

R0 + xper
and e = k − 1

k + 1
, (15)

with R0 = 5 au the location of our local box. The tracking of
the extrema and the resulting eccentricity function are illustrated
in Fig. 12, where we see that e(t) itself follows a random walk.
This means that gravitational stirring can both excite and damp the
epicyclic motions of individual particles. As we will see shortly,
however, the influence of the stochastic forcing on the ensemble of
planetesimals will increase the rms eccentricity amongst the mem-
bers, and therefore heat-up the ensemble as a whole.

3.5.1 Saturation amplitudes

Needless to say that the velocity fluctuations will not grow ad infini-
tum, but will reach a saturated state once the aerodynamic damping
reaches the level of the stochastic forcing. This is illustrated in
Figs 13 and 14, where we plot the temporal evolution of the radial
velocity dispersions for large and small bodies, respectively.

Looking at the lowermost curves in Fig. 13, we see that the ran-
dom velocity of particles with 50 m � Rp � 200 m saturates on
time-scales of several hundred orbits. In this regime, the saturation
amplitude increases with the particle size, reflecting the weaker
damping for larger bodies. Because the gravitational stirring is in-
dependent of the particle mass, smaller bodies reach their saturated
state earlier compared to heavier ones. For larger bodies (500 m,
1 km), we do not achieve equilibrium, but after 500 orbits we note
that σ (vr) � 0.08cs for 1km-sized bodies (where cs = 1 km s−1 in
this model).

Unlike for their larger counterparts, smaller bodies are predomi-
nantly affected by gas drag and we observe the opposite trend with
respect to the saturation amplitudes (see Fig. 14). At first, it seems
surprising that σ (vx) can be excited beyond the turbulent velocity
vrms = 0.13 cs of the gas. This is, however, only the case for the
radial velocity and can be understood from the orbital dynamics

Figure 13. Evolution of the radial velocity dispersion for set ’G+D’. For
sizes above R � 1 km, forces due to gas drag become gradually negligible
and the evolution is described by a

√
t behaviour.

Figure 14. Same as Fig. 13, but for smaller particles, subject only to gas
drag. Note the opposite trend with particle radius (also cf. Fig. 15 below).

which leads to 〈vx〉≈ 2〈vy〉 as characteristic of epicycles (also cf.
fig. 5 in Youdin & Lithwick 2007).

The saturation amplitudes in the velocity dispersion which arise
as a function of particle size are compiled in Fig. 15. With the
exception of the Rp = 1 m species, which is tightly coupled to
the gas, σ s(vx) ≈ 2 σ s(vy) as expected from orbital dynamics. The
results for set D can be readily compared to the upper panel3 of fig. 5
in Youdin & Lithwick (2007), which shows saturation amplitudes
obtained from a simple turbulence model. Considering the vast
differences in the two approaches, the results agree surprisingly
well.

Considering the G+D set, the particle rms velocity takes its
maximum for τs � 1 and falls-off to about 10 per cent its peak
value at τ s � 103 �−1. This is a somewhat shallower decline than
in the model of Youdin & Lithwick, where this value is reached
at 102 already. The minimum radial velocity dispersion obtained is
�0.1vrms (where vrms is the turbulent velocity dispersion of the gas).
This minimum value marks the point where the G+D set deviates
from the D set (see RHS in Fig. 15). This implies that objects of size
≈50 m enjoy the relative comfort of being the least affected by their

3 As we will discuss in Section 3.8.2, we find a characteristic eddy time
τ e ≈ �−1 in our simulations such that the standard case applies.
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Figure 15. Saturated velocity dispersions as a function of planetesimal
radius, Rp, and stopping time, τ s, respectively. Particles which feel both the
gas gravity and drag force (symbols) deviate from the ones that only feel the
gas drag (solid lines) for sizes larger than R ≈ 50 m.

turbulent surroundings, with a velocity dispersion that corresponds
to 15–20 m s−1. Interestingly this is close to the speeds required for
catastrophic break-up of planetesimals in the 10–100 m range (Benz
& Asphaug 1999; Stewart & Leinhardt 2009).

For larger sizes, the velocity dispersion is seen to rise as the
particle size rises in Fig. 15, but the largest bodies we consider
have not had time to reach the equilibrium values of their veloc-
ity dispersion. The explanation for the existence of the minimum
velocity dispersion observed in Fig. 15 is straightforward. Smaller
bodies are tightly coupled to the gas, and so attain a velocity dis-
persion close to that of the gas itself. Larger particles experience
a significantly smaller gas drag, which then contributes weakly to
counterbalancing the stirring effect of the stochastic gravitational
force provided by the disc, leading to a large velocity dispersion.
Intermediate-sized particles in the 50–100 m range are sufficiently
decoupled from the gas that they experience an orbit-averaged drag
force that causes significant damping of the eccentricity growth
driven by the disc gravity.

3.6 Evolution of the planetesimal velocity
dispersion – global model

We now examine the evolution of the velocity dispersion of plan-
etesimals of different size which experience the gas drag force
within global models, focusing on the radial component of this
quantity. The key issues that we explore are the magnitude of
the velocity dispersion attained as a function of planetesimal
size and disc model parameters, and the implications for the
outcomes of collisions between planetesimals for the growth of
planets.

3.6.1 Model G5 – comparing local and global models

The global disc model with physical parameters most similar to the
shearing box simulation is model G5. As described in Section 2.4,
the shearing box model adopted H = 0.075, and used equation (11)
and μ = 2.4 in defining the strength of the gas drag force. Most of
the global simulations adopted model parameters which are slightly

Figure 16. Evolution of the radial velocity dispersion, σ (vr), in units of the
sound speed, for planetesimals of different size from run G5.

different from these, a fact which was discovered after most of the
simulations presented here had been completed. We present here,
however, a global model with the same parameters used in the
shearing box run for the purpose of providing a direct comparison.
The only difference in the underlying disc models is the choice of
magnetic field topology and strength, with the resulting α values
being α � 0.05 for the shearing box and α � 0.035 for the global
model, which are similar enough for a meaningful comparison to
be made. The planetesimal sizes considered in this run were 10 m,
20 m, 50 m, 100 m, 1 km and 10 km, with each size being represented
by 25 particles.

The evolution of the radial velocity dispersion, expressed in units
of the local sound speed, is shown in Fig. 16 for planetesimals with
sizes in the range 50 m–10 km. Comparison with Fig. 13, which
shows the same data for the shearing box simulation, indicates that
there is good agreement between the two simulations. The 50 m and
100 m sized objects quickly attain equilibrium values for σ (vr) in
the range 0.01–0.02cs (where cs = 1 km s−1 for this model), similar
to the values obtained in the shearing box run. After 500 orbits σ (vr)
� 0.08cs for the 1 km sized bodies, and the 10 km bodies have σ (vr)
� 0.1cs, again in good agreement with the shearing box results.

In principle, we would expect the shearing box simulations to gen-
erate slightly larger velocity dispersions, due to the more vigorous
turbulence exhibited by that model, and the correspondingly larger
value of 〈δ�/�〉. The fact that the gravitational stirring is actually
found to be very similar is probably because the global simulations
allow for a faster growth of the velocity dispersion due to larger
length-scales being included in the disc gravity force calculation.
More distant density perturbations are thus able to contribute to
the stochastic gravitational field experienced by the planetesimals,
providing a small boost to the gravitational stirring.

Whereas the larger planetesimals have not achieved an equilib-
rium value for σ (vr) by the end of the simulation, planetesimals with
sizes in the range 10–100 m have. We plot the saturated value of
σ (vr) as a function of particle size in Fig. 17, and in agreement with
the results obtained for the shearing box simulation, we observe
that there is a minimum value for σ (vr) for bodies of size �50 m,
corresponding to σ (vr) � 20 m s−1.
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Figure 17. Saturated values of σ (vr), measured in metres per second, as a
function of particle size from run G5.

3.6.2 Evolution as a function of α: models G1–G4

We now consider the evolution of the velocity dispersion as a func-
tion of the turbulent strength, as measured by α, by presenting the
results from models G1, G2, G3 and G4. As shown in Table 1, the
value of α was modified by changing the strength of the net toroidal
magnetic field in the initial conditions. Models G1 and G2 differed
only in the size of their azimuthal domains (π/2 for G1 and 2π for
G2), but the increase in domain size for G2 causes a small increase
in α (presumably due to the presence of low-order MRI modes).
We note that the disc parameters and values used in computing the
gas drag strength were different in these models compared with run
G5, and so these runs are not directly comparable with that one.

The evolution of σ (vr) for models G1–G4 is presented in Fig. 18
for planetesimals of size 10 m, 100 m, 1 km and 10 km. Overall, the
evolution of σ (vr) is found to be a weak function of α [we find an
approximate scaling σ (vr) ∝ α0.20; see below], and the evolution of
σ (vr) for models G1 and G2 is in good agreement. Although α (and
〈δ�/�〉) is larger in model G2, we find that the velocity dispersion
increases at a slightly slower rate for the larger planetesimals than
found in model G1. The difference, however, is well within the

√
N

variations expected for the low numbers of particles used.
In comparison with run G1, G3 shows slower growth of σ (vr)

for the larger planetesimals, and a smaller saturated value of σ (vr)
for the 10 m sized bodies, as expected given the smaller value of α.
Run G4 shows correspondingly faster growth, and larger saturated
values, of σ (vr) due to the larger value of α. Each of the plots in
Fig. 18 shows fits to the data for the 10 km bodies, assuming a
functional form σ (vr) = Cσ (vr)

√
t . The values of Cσ (vr) for each

model are tabulated in Table 1. Fitting the data for α and Cσ (vr) listed
in Table 1, using an expression of the form Cσ (vr) = Kvrα

q , leads to
a best-fitting solution with q = 0.20 and Kvr = 1.64×10−2. We use
this fit to the data in Section 3.6.4, where we discuss the expected
saturation value of σ (vr) for 1 km and 10 km sized planetesimals as
a function of α.

3.6.3 Saturation values of σ (vr) for 1 km and 10 km planetesimals

Our simulations have not run for sufficient time for σ (vr) to reach its
equilibrium value for the 1 km and 10 km sized bodies. Assuming

that saturation is reached when the stochastic gravitational forcing
is balanced by gas drag damping, we can estimate the saturation
values by equating the forcing and damping time-scales. Working
in terms of the orbital eccentricity [where e � vdisp/vK, with vdisp ≡
σ (vr) and vK being the Keplerian velocity], and using the expression
vdisp = Cvr

√
t we can write

τgrow = e

de/dt
= 2e2v2

K

Cσ (vr)2
, (16)

where τ grow is the eccentricity growth time. The damping time for
the velocity dispersion can be estimated simply from the ratio of
the momentum associated with the velocity dispersion and the gas
drag force (Ida et al. 2008)

τdamp = 2mpvdisp

CDπR2
p�v2

disp

. (17)

Equating expressions (16) and (17), and writing the planetesimal
mass in terms of its radius and internal density, �p, leads to the
following expression for the equilibrium velocity dispersion

vdisp =
[

4�pRpCσ (vr)2

3CD�

]1/3

. (18)

Noting that cs = 666 m s−1 at 5 au in our global disc models G1–G4,
and expressing Cσ (vr) in SI units, we obtain Cvr = 3.15 × 10−4 for
model G1. This leads to estimates of the equilibrium velocity disper-
sion of vdisp = 765 m s−1 for 10 km bodies (approximately the sound
speed), and vdisp = 356 m s−1 for 1 km bodies with �p = 3 g cm−3 at
5 au in a disc with � = 150 g cm−2 and H/r = 0.05. These values
are clearly very much in excess of the velocities required for catas-
trophic disruption of 1 km and 10 km sized planetesimals, being
many times larger than the escape velocities, vesc, from these bodies
(vesc � 12 m s−1 for a 10 km body with �p = 3 g cm−3). Extrapo-
lating forward in time, the time required to reach the equilibrium
value for vdisp for the Rp = 10 km planetesimals is �1.75 × 105yr,
comparable to the runaway growth time-scale at 5 au.

3.6.4 Saturation of σ (vr) as a function of α

Using the expression Cσ (vr) = Kvrα
0.20 discussed in Section 3.6.2,

in conjunction with equation (18), we can estimate the value of α

which leads to a particular value of vdisp for a particular size of
planetesimal

vdisp =
(

4�pRpK
2
vr
α0.4

3CD�

)1/3

. (19)

Using the results from model G1, and working in SI units, we obtain
Kvr = 6.16 × 10−4. Values of vdisp as a function of α are plotted in
Fig. 19 for planetesimal sizes 1 km and 10 km, and for planetesimal
internal densities �p = 1 and 3 g cm−3. It is clear that even with a
small value of α = 10−6, equilibrium velocity dispersions are in
the range 60 ≤ vdisp ≤ 110 m s−1, somewhat larger than the escape
velocities and catastrophic disruption velocities of these bodies.
Evidently a protoplanetary disc needs to be very quiescent near its
midplane in order to allow for runaway growth to proceed, and to
prevent the catastrophic breakup of colliding planetesimals in the
1–10 km size range.

There are obviously a number of caveats contained within the
simple arguments presented above. In a disc in which the density is
vertically stratified (with or without a dead zone), the dependence
of vdisp on α may be steeper if the stochastic forcing of planetesi-
mals depends on the magnitude of local density rather than surface
density perturbations. It is also possible that mass accretion through
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Figure 18. Evolution of the radial velocity dispersion, σ (vr), in units of the local sound speed, for planetesimals of different size from runs G1 (top-left panel),
G2 (top-right panel), G3 (lower-left panel) and G4 (lower-right panel). Each panel also displays a fit to the random walk behaviour, as described in the text.

Figure 19. Variation of the saturated velocity dispersion as a function of
the turbulent α and the planetesimal density.

the disc may be generated by the winding up of net radial fields in
a disc with a dead zone (Turner & Sano 2008), breaking the link
between α and 〈δ�/�〉, which the above arguments rely upon. Con-
firmation of the result obtained above will be sought in a forthcom-
ing paper in which we examine planetesimal dynamics in vertically
stratified discs with dead zones.

3.7 Radial migration of planetesimals – global models

We now consider the radial drift of the planetesimals, arising both
from the effects of gas drag and from the action of the stochastic
gravitational torques. The radial drift of large planetesimals is po-
tentially an important effect during planet formation, as it may lead
to the delivery of material to regions which have suffered from de-
pletion, and may also enhance the delivery of volatiles to the inner
system from beyond the snowline. Radial drift due to gas drag is
not present in the local shearing box simulations, since there is no
radial pressure gradient to generate sub-Keplerian velocities in the
gas. We therefore begin our discussion by examining the results of
the global simulations.
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Figure 20. Evolution of the semimajor axis for all planetesimals in run G1. The top-left panel displays data for the 10 m planetesimals, along with the
theoretically expected drift within a laminar disc (solid black line). The top-right panel corresponds to the 100 m planetesimals. The lower-left panel refers to
the 1 km planetesimals, and the lower-right panel shows the 10 km bodies.

In a sub-Keplerian disc, the gas drag force given by equation (7)
will lead to a loss of angular momentum and radial drift of planetes-
imals at a rate which depends on their size (Weidenschilling 1977).
The time over which the gas drag removes an amount of specific
angular momentum equal to � j from an embedded planetesimal is
given by

τdrag = 8Rp�p

3CD�

�j

rpv2
pg

, (20)

where �p is the density of the planetesimal material (here assumed
to be 3 g cm−3). Superposed on this inward drift are the stochastic
torques experienced by the planetesimals in a turbulent disc, which
will cause diffusion of planetesimal semimajor axes (as well as
contributing to the eccentricity evolution). The effective diffusion
coefficient associated with the diffusion of planetesimal angular
momenta can be approximated by Dj = σ 2

Tτcorr, where σ T is the
standard deviation of the distribution of torques (assuming Gaus-
sian statistics), and τ corr is the correlation time associated with the
stochastic torques (Johnson et al. 2006). The time-scale over which
diffusion will change the specific angular momentum of a typical
planetesimal by an amount equal to �j is

τdiff = (�j )2

Dj

. (21)

We expect that the effects of radial drift and diffusion will be
comparable when equations (20) and (21) are equal, and this is the

time-scale over which the drag-induced inward drift of planetesi-
mals of size Rp should just become apparent against the isotropic
diffusion generated by the turbulence. The random walk associated
with the stochastic torques means that the planetesimal size, Rp,
for which inward drift just becomes apparent depends on the mag-
nitude of the change of angular momentum, �j. Larger values of
�j imply longer evolution times, such that the net inward drift of
larger planetesimals, which are increasingly impervious to gas drag,
eventually becomes apparent.

Results from model G1 are shown in Fig. 20, which shows the rel-
ative change in semimajor axis versus time for all planetesimals, and
it is clear that the Rp = 10 m bodies undergo gas drag-induced inward
migration, whereas the larger bodies are dominated by stochastic
migration. The rms relative change in semimajor axis, σ (�a/a), for
the Rp = 10 km planetesimals is shown in Fig. 21.

Small changes to the specific angular momentum and semimajor
axis of a body are related according to

�j

j
= 1

2

�a

a
. (22)

Using equations (21) and (22), we can estimate how far we expect
large planetesimals to have diffused in semimajor axis during the
1200 orbits of run time in model G1. The distribution of torques,
averaged over all 10 km sized planetesimals, is presented in Fig. 22,
and the standard deviation of this torque distribution is found to
be σ T = 1.5 × 108 cm2 s−2 (equivalent to 3.46 × 10−5 in code
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Figure 21. Evolution of the rms change in semimajor axis for 10 km sized
planetesimals, where each line is annotated with the run label.

Figure 22. Distribution of torques experienced by the 10 km sized plan-
etesimals in run G1, averaged over all planetesimals. The standard deviation
obtained for the distribution σ = 1.5 × 108 cm2 s−1.

units). The correlation time, τ corr, was estimated to be τ corr = 0.32
orbits from the exponential decay of the ACF shown in Fig. 9 in
Section 3.3.1. The diffusion coefficient, Dj, expressed in code units
is given by Dj = 9.51 × 10−9, which leads to the prediction that
a typical planetesimal located at r = 2.5 (5 au) in model G1 will
diffuse such that �a/a = 0.021. Comparing this with the value of
σ (�a/a) in Fig. 21, we see that the simulation resulted in σ (�a/a)
� 0.03 after 1200 orbits, in reasonable agreement with the value
predicted by the diffusion coefficient. The fact that the estimated
amount of diffusion is too small by a factor of ∼√

2 compared to the
simulation result indicates that the approximation to the diffusion
coefficient given by Dj = σ 2

Tτcorr is too small by a factor of �2. This
possibly arises because of the ambiguity discussed in Section 3.3.1
regarding the definition of the correlation time, but may also be
affected by sampling errors that arise from using only 25 particles
per size bin, leading to Poisson errors at the ∼20 per cent level.

We can now examine if the gas drag-induced radial drift of the
Rp = 10 m bodies observed in Fig. 20, and the stochastic migra-
tion of all larger planetesimals, is expected. According to equa-
tion (22) and Fig. 21, stochastic migration causes a relative change in

specific angular momentum �j/j = 0.015. Putting this value into
equation (20) tells us that planetesimals of size Rp � 25 metres
should radially drift due to gas drag and diffuse by a similar dis-
tance. Planetesimals which are smaller than this should show strong
inward drift, and larger bodies should have their evolution domi-
nated by diffusion. The relative change in semimajor axes for all
planetesimals in run G1 plotted in Fig. 20 shows good agreement
with this expectation.

Changes in the mean drag-induced radial drift rate due to the
turbulence can only be discerned for planetesimals of size Rp =
10 m in Fig. 20, where the straight black line plotted in the top-left
panel shows the trajectory of a planetesimal embedded in a laminar
disc. Up to a time of approximately 300 orbits, the mean drift rates
of the planetesimals in the turbulent disc closely match the trajec-
tory in the laminar disc. At later times, however, the trajectories
diverge, with the drift rates for the planetesimals in the turbulent
disc decreasing by about a factor of 3. This is not due to the effects
of stochastic forces, which earlier on in the evolution are seen to
cause a dispersion of the trajectories around a mean which matches
the laminar case closely. Instead, variations in the effective α stress
parameter as a function of radius cause radial structuring of the disc,
such that peaks and troughs in the mean surface density arise. The
slowing down of the radial drift observed in Fig. 20 arises when the
planetesimals enter a region of the disc in which the magnitude of
the radial pressure gradient decreases. Thus, we observe that signif-
icant changes to the radial drift of planetesimals do not occur due
to stochastic forcing, but may arise because of radial structuring of
the disc due to spatial variations in turbulent stresses, which persist
over the run times of the simulations.

If we adopt a typical disc lifetime of 5 Myr (Haisch et al. 2001),
then we can estimate the amount of radial diffusion for large (Rp ≥
1 km) planetesimals during the planet forming epoch. Adopting a
diffusion coefficient, Dj, which gives agreement with the amount of
radial diffusion observed for 10 km-sized planetesimals in Fig. 21,
equation (21) predicts �j/j = 0.3, corresponding to a 50 per cent
change in the semimajor axis of a typical planetesimal located ini-
tially at 5 au. Considering the relative contributions to radial drift
of solid bodies from both gas drag-induced migration and diffu-
sion due to the stochastic gravitational field of the disc, we have
plotted the evolution times τ drag and τ diff in Fig. 23, assuming a 30
per cent change in the specific angular momentum of a planetesi-
mal, using equations (20) and (21). We can see that for evolution
times of 5 Myr, the drag and diffusion time-scales are equal for

Figure 23. Variation of τ drag and τ diff as a function of planetesimal size.
The underlying disc model is the same as in run G1.
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planetesimal size Rp � 100 m, but drag time-scales are much larger
than diffusion time-scales for larger bodies such as 1 km and 10 km-
sized planetesimals. This shows that large-scale migration of large
planetesimals over evolution times of 5 Myr will be dominated by
diffusion and not gas drag-induced inward drift.

Strong radial mixing of planetesimals at the level of �a/a = 0.5
would have very significant implications for planetary formation. In
our own Solar system, for example, radial mixing of large icy plan-
etesimals from beyond the snowline would substantially increase
the volatile content of the terrestrial planets, and effectively smear
out the observed apparent variation in asteroid properties as a func-
tion of heliocentric distance. It thus seems unlikely that such radial
mixing occurred in the solar nebula, providing strong circumstantial
evidence that the degree of turbulence present in model G1 was not
present in the solar nebula during the formation of the Solar system.
We explore the degree of radial mixing as a function of turbulent
strength (measured by the effective α parameter) below.

3.7.1 Planetesimal diffusion as a function of α

The rms value of the relative change in the semimajor axes for
10 km sized planetesimals for various models is shown in Fig. 21.
The discs in models G1 and G5 gave rise to very similar values of α

and 〈δ�/�〉, and we see that the radial diffusion rates are also very
similar. Model G3 had a value of α = 0.017, and a correspondingly
smaller value of 〈δ�/�〉, which leads to a slower rate of diffusion.
The rate of diffusion in semimajor axis is a fairly weak function of
α (see discussion below), such that it is only after a time of t ∼ 600
orbits that the divergence in the diffusion rates can be detected for
models G1 and G3 in Fig. 21. Model G4 has a substantially larger
value of α = 0.101, and leads to a noticeably larger rate of diffusion
of �a/a in Fig. 21.

We have fit the data for σ (�a/a) shown in Fig. 21 assuming
a simple random walk model σ (�a/a) = Cσ (�a)

√
t , and the

coefficients Cσ (�a) are given in Table 1. If we fit the data given in
Table 1 for α and Cσ (�a) using the function Cσ (�a) = K�aα

q, then
the best-fitting solution gives q = 0.20 and K�a = 1.70 × 10−3. This
is the same power-law dependence found for the evolution of the
velocity dispersion as a function of α. This fit allows us to estimate
the amount of radial diffusion that we expect as a function of α.

3.7.2 Radial diffusion constraints on α in the solar nebula

As discussed above, large planetesimals experience only small
changes in their angular momenta and semimajor axes due to gas
drag, assuming that they remain on approximately circular orbits.
For example, a 10 km sized planetesimal orbiting at 5 au in model
G1, in the absence of turbulence, would migrate a distance of ∼4 ×
10−3 au in 5 Myr. For such large bodies, evolution of the semimajor
axis is dominated by turbulence-induced diffusion, especially if the
disc is fully turbulent as in models G1–G5. Model G1 predicts that
a typical 10 km sized planetesimal orbiting at 5 au will diffuse a
distance �a � 2.5 au in 5 Myr. If this 50 per cent change in semi-
major axis is applied to bodies in the asteroid belt, then this level
of diffusion is probably inconsistent with the variation in observed
properties of asteroids as a function of heliocentric distance (Gradie
& Tedesco 1982; Mothé-Diniz, Carvano & Lazzaro 2003). These
variations would have been smeared out substantially if such a large
amount of orbital diffusion had taken place during the Solar system
formation.

The survey of how the distribution of asteroidal taxonomic types
varies as a function of heliocentric distance presented by Gradie &
Tedesco (1982) concluded that there is a systematic variation. For
the seven taxonomic classes identified in their sample, it was sug-
gested that the distribution of each peaks at a different location in
the asteroid belt, with a dispersion around this peak location of 0.5–
1 au. The observed correlation between asteroidal type (assumed to
relate to composition) and heliocentric distance was interpreted as
being evidence that the asteroids were formed essentially in their
observed locations, being subject subsequently to a relatively mod-
est amount of radial mixing at the level of ∼0.5 au. The more recent
survey of Mothé-Diniz et al. (2003) presents a more complicated
picture in which S-type asteroids are distributed more uniformly
throughout the asteroid belt, but are none the less the dominant
class in the inner and middle belts, with the more volatile-rich C-
type bodies being preferentially located in the outer belt beyond
�3 au.

Radial mixing of planetesimals during planet formation is ex-
pected to occur through gravitational interaction with planetary
embryos. Wetherill (1992) suggested that a population of nearly
Mars-mass embryos embedded within the primordial asteroid belt
could explain the required mass depletion and radial mixing. More
recent simulations of this effect (Petit, Morbidelli & Chambers
2001; O’Brien, Morbidelli & Bottke 2007) show that radial diffu-
sion of asteroids peaks at a value �a � 0.5 au, broadly consistent
with the observational constraints. In a series of related simulations,
O’Brien, Morbidelli & Levison (2006) examined the formation of
terrestrial planets, and estimated the rate of water delivery to the
Earth by accretion of volatile-rich material from beyond ∼2.5 au.
It was found that simulations initiated with Jupiter- and Saturn-
analogues on circular orbits could reasonably explain the abundance
of water on the Earth (�5 × 10−4 M⊕). Substantial radial mixing
of volatile-rich planetesimals and embryos from the outer asteroid
belt, due to disc turbulence, would very likely lead to terrestrial
planets which are endowed with water and other volatiles well in
excess of what is observed.

We suggest that orbital diffusion due to turbulence which exceeds
�a � 0.5 au is probably inconsistent with observations, and we now
discuss which value of α is consistent with �a � 0.5 au in the as-
teroid belt. It should be noted, however, that using the asteroid belt
as a test for dynamical mixing requires that the observed variation
of properties with heliocentric distance is primordial. The recent
suggestion by Levison et al. (2009) that cometary material originat-
ing from further out in the Solar system became implanted in the
asteroid belt during the late heavy bombardment means we should
take care not to over interpret the observations, or their theoretical
implications.

Using the approximate fit C�a = K�aα
0.20, discussed in Sec-

tion 3.7.1, combined with σ (�a/a) = C�a

√
t , we can estimate

which value of α should lead to an amount of diffusion which is
consistent with the above discussion. Assuming that the dispersion
in asteroid properties as a function of heliocentric distance is con-
sistent with diffusion generating σ (�a/a) = 0.16( ≡ 0.5/3) over
a putative solar nebula lifetime of 5 Myr (Haisch et al. 2001), and
noting that K�a = 1.7 × 10−3 (see Section 3.7.1), we find an up-
per limit for α � 5 × 10−5. Interestingly, this is very similar to
the midplane Reynolds stress obtained in shearing box simulations
of discs with dead zones (Fleming & Stone 2003; Turner, Sano &
Dziourkevitch 2007; Ilgner & Nelson 2008). It would seem that
our rough estimate for the amount of diffusion which can occur
as a function of α provides circumstantial evidence that the solar
nebula did indeed contain a substantial dead zone in the vicinity
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of the asteroid belt and giant planet formation region. We note,
however, that caution must be used when interpreting this result.
Confirmation of the variation of diffusion rate as a function of α

is required using simulations which include vertical stratification
and dead zones, and account needs to be made of the fact that the
nebula mass changes significantly over a 5 Myr period. Models for
the formation of giant planets require nebula masses approximately
three to five times larger than the MMSN (Pollack et al. 1996),
which will increase the value of σ (�a/a) by a similar factor. The
disc mass will deplete over the nebula lifetime, so that the net effect
of these competing factors needs to be examined in more detail.

Taken together, the constraints on α lead to some interesting
conclusions regarding the strength of turbulence in the solar neb-
ula. Shearing box simulations with dead zones generate Reynolds
stresses at the midplane with α ∼ 10−5. If this stress is accompa-
nied by density waves and stochastic torques with amplitudes which
follow the scaling described in Section 3.7.1, then it becomes very
difficult to see how runaway growth could have caused rapid growth
of planetary embryos via planetesimal accretion. Indeed, our results
suggest that with α = 10−6, catastrophic disruption of 10 km sized
bodies remains possible (although this conclusion must await firm
confirmation from more realistic, vertically stratified simulations).
Taken at face value, this indicates that a mechanism is required
for forming large bodies which avoids the need to go through the
runaway growth phase, such as that suggested by Johansen et al.
(2007). The existence of gradients in the chemical composition of
Solar system bodies as a function of heliocentric distance, however,
is broadly consistent with a nebula model in which there exists a
dead zone with Reynolds stress α � 10−5. The existence of these
chemical gradients, however, is apparently inconsistent with a fully
turbulent disc model with effective α � 10−5.

3.7.3 Evolution of the eccentricity and �a/a

For small values of the eccentricity, the relation between the rms
eccentricity, σ (e), and the radial velocity dispersion, σ (vr), may be
approximated as σ (e) � σ (vr)/vK, where vK is the Keplerian ve-
locity. In Section 3.6.2, we showed that for the larger planetesimals
with Rp = 10 km, the radial velocity dispersion may be approxi-
mated as a random walk with σ (vr) = Cσ (vr)

√
t , where σ (vr) is

measured in units of the local sound speed, cs, and the Cσ (vr) values
are listed in Table 1. Similarly, we have shown in Section 3.7.1 that
the rms radial diffusion σ (�a/a) = Cσ (�a)

√
t , where the Cσ (�a)

values are also listed in Table 1. Thus, we expect the ratio of ec-
centricity changes to semimajor axis changes, σ (e)/σ (�a/a) =
(H/r)Cσ (vr)/Cσ (�a). Taking the value H/r = 0.05 for the models
G1–G4, we find that 0.34 ≤ σ (e)/σ (�a/a) ≤ 0.57, so that changes
in the relative semimajor axes are similar to eccentricity changes
for larger planetesimals that are subject to stochastic gravitational
interaction with a turbulent disc.

3.7.4 Diffusion versus type I migration of low-mass protoplanets

In addition to considering the radial drift of planetesimals due to gas
drag, and the role of stochastic torques in potentially inhibiting this
inward drift, we can also consider the effect that these stochastic
torques might have on the type I migration of low-mass planets
(Nelson & Papaloizou 2004; Nelson 2005). We have ascertained
above that bodies undergoing diffusion due to stochastic torques
may change their semimajor axes by 50 per cent over a disc lifetime
of 5 Myr. Using the type I migration formula from Tanaka, Takeuchi

& Ward (2002) for a disc model with properties which are the
same as model G1, we note that planets with mpl/M� = 3.5 ×
10−7 will migrate a distance equal to 50 per cent of their initial
semimajor axis (assumed to be 5 au) via type I migration over 5 Myr.
This indicates that direct competition between type I migration and
stochastic migration will only prevent the large-scale migration of
planetary bodies with masses similar to that of Mars over such
nebula lifetimes. It should be noted, however, that the possible
radial structuring of protoplanetary discs by turbulence due to spatial
variations in α (possibly due to a dead zone) may provide a means
of preventing inward drift due to the operation of corotation torques
(Masset 2001; Masset et al. 2006).

3.8 Migration of planetesimals – local model

The local shearing box approximation that we have adopted in this
work does not include the effect of a radial pressure gradient in mod-
ifying the orbital angular velocity of the gas. Consequently, the gas
and embedded bodies orbit at the same mean angular velocity, and
planetesimals do not undergo radial migration due to gas drag inter-
action with a sub-Keplerian disc. Large planetesimals, whose inter-
action with the gas disc is gravity dominated, experience stochastic
gravitational forces that cause diffusion of the semimajor axes (or
equivalently, the guiding centres of the particle epicycles). Smaller
bodies, whose evolution is dominated by gas drag, similarly diffuse
radially due to the stochastic gas drag forces. We discuss both of
these regimes below.

3.8.1 Diffusion of gravity dominated bodies

As with the larger planetesimals discussed in Section 3.7 for the
global models, the larger planetesimals in the shearing box simu-
lations undergo radial diffusion due to the stochastic gravitational
forces they experience. The deviation in the positions of the guiding
centres of particles from their initial values is denoted as �x (mea-
sured in units of the local scaleheight H), and we plot the standard
deviation of this quantity for the gravity-only particles (set ‘G’) in
Fig. 24. As with the global simulations, the evolution of �x dis-
plays random walk behaviour. As is illustrated by the fitted curve
and error bounds in Fig. 24, the random walk can reasonably be

Figure 24. Dispersion in the radial displacement �x for a swarm of particles
subject to the gas gravity alone. The time evolution follows a random walk
as reasonably well described by the given relation.
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Figure 25. Excitation amplitudes for the random walk behaviour shown in
Fig. 24; lines correspond to Cσ for the displacement (dash–dotted), the rms
velocity (solid), and the eccentricity (dashed lines). Units are in [H], [cs]
and [H/R] times [(2π/�)−1/2], respectively. (These values are also listed
in Table 2.)

well approximated by the function

σ (�x) ≈ Cσ (�x)
√

t − t0, (23)

with a single fitting constant Cσ = (7.7 ± 1.3) × 10−3 representing
the strength of the stirring mechanism.

The amplitude of this fitting constant for the G+D particle set is
plotted using the light grey dash–dotted curve in Fig. 25 (which also
displays random-walk fitting parameters for the growth of the ra-
dial velocity dispersion and eccentricity). It is clear that for particles
with Rp ≥ 100 m, this coefficient has an almost constant value, indi-
cating that the radial diffusion of these larger-sized planetesimals is
dominated by gravitational interaction with the disc. The transition
region is rather narrow, and G+D particles quickly approach the
values corresponding to the gravity only particle set.

We now compare the results shown in Fig. 24 with those obtained
for the global simulations. The deviation of the position of the
particle guiding centres is measured in units of the local scaleheight,
H. We see from Fig. 24 that the best fit reaches a value �x =
0.107H after a time t = 200 orbits, and would reach a value �x =
0.262H after 1200 orbits. Dividing by the initial radial location of
the particles, we obtain �x/r = 0.262H/r. The shearing box runs
have a value H/r = 0.075, when we consider that they are located
at an orbital radius r = 5 au, such that �x/r = 0.02. This compares
reasonably well with the results of the global simulations, where we
obtain a value of �a/a = 0.03 for model G1 at t = 1200 orbits. In
terms of physical parameters, model G5 is the most similar to the
shearing box simulation, but as may be seen in Fig. 21, the rate of
radial diffusion for models G1 and G5 is very similar.

As discussed in Section 3.7, the diffusion coefficient associated
with the random walk in radius of the particles (or equivalently
the diffusion of angular momentum) Dj = σ 2

Tτcorr, where σ T is
the standard deviation of the fluctuating torque and τ corr is the
torque correlation time, averaged over the ensemble. The diffusion
coefficient in the global simulations was found to be in reasonable
agreement with the degree of particle diffusion obtained in those
models. For the shearing box model, the value of σ T is given in
Fig. 7, and is almost identical to that obtained in the global model
G1. The torque correlation time is given by Fig. 9, and has a value
τ corr = 0.32 orbits. We thus see that the value of �x/r = 0.02

obtained by extrapolating Fig. 24 to a time t = 1200 orbits is in very
good agreement with what would be expected from the diffusion
coefficient Dj = σ 2

Tτcorr, the prediction being �x/r = 0.021.

3.8.2 Diffusion of gas drag-dominated bodies

As with the gravity-dominated particles, the gas drag-dominated
particles diffuse radially over time. The radial displacement, �x,
evolves according to a random walk, and can be reasonably well
fit by equation (23). The fitting coefficients, Cσ (�x), are plotted in
Fig. 25 as a function of planetesimal size. In Table 2, we furthermore
compile a collection of values for reference. We observe that the
diffusion via drag forces roughly scales with stopping time like τ−1

s

for τ s � 1. When the stopping time approaches the dynamical time
�−1, which is the case for boulders of a few metres in radius, the
dependence on τ s becomes weaker because the particles are tightly
coupled to the turbulent motion of the flow, and essentially behave
like massless tracers. In this limit we see that Cσ (�x) approaches
the value of the tracer particles in Fig. 25.

To interpret the above findings in a more general context and be
able to scale the obtained values with respect to model parameters,
we now consider the Schmidt number, denoted as Sc = ν/D.4 This is
the ratio of the momentum diffusion rate and the mass diffusion rate,
and in our case the momentum diffusion ν is given by the turbulent
Maxwell and Reynolds stresses as quantified by the dimensionless
α parameter. For the mass diffusion, we distinguish between La-
grangian fluid elements (represented by massless tracer particles)
for which we obtain a diffusion coefficient Dg, and planetesimals
with inertia, to which we assign the notation Dp.

Lagrangian tracers. Before looking at the diffusion of the plan-
etesimals themselves, we need to provide a reference value. This is
given by Scg = ν/Dg, i.e. the Schmidt number for Lagrangian fluid
elements. To determine the diffusion coefficient Dg, we closely fol-
low the approach described in section 4 of Fromang & Papaloizou
(2006). This means, we compute the velocity ACF

Sij (τ ) = 〈vi(z(z0, τ ), τ ) vj (z0, 0)〉 , (24)

where the dependence of vi on z(z0, τ ) implies that we are consider-
ing the correlation with respect to a Lagrangian fluid element. Note
that Fromang & Papaloizou have approximated this by vi(z0, τ ), i.e.
the Eulerian velocity components (cf. their section 2.3). Because
we include the evolution of massless tracer particles, we do not rely
on this approximation and can directly compute equation (24) along
the particle trajectories.

The diffusion of a fluid element along the radial direction can
then be obtained by time-integrating the corresponding component
of the correlation tensor:

Dg(τ ) =
∫ τ

0
Sxx

g (τ ′) dτ ′ . (25)

As discussed in Fromang & Papaloizou (2006), for large τ this can
be approximated by the product of the square of the rms velocity
〈v2

x 〉 = Sxx
g (0) and the correlation time τ c of the turbulence. This

estimate is based on the assumption that the correlations in velocity
decay like e−τ/τc . To check whether this assumption is warranted,
we plot Sg(τ ) and the derived Dg(τ ). This is done separately for the
x and y directions in the left- and right-hand panels of Fig. 26.

Looking at the two ‘hockey stick’ shaped curves, we see that the
e−τ/τc law (dashed lines) is met well for the azimuthal component

4 To avoid further confusion, we adhere to the conventions introduced in
section 2.1 of Youdin & Lithwick (2007).
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Table 2. Random walk-amplitudes Cσ describing the stochastic excitation (as depicted in Fig. 24) of the dispersion within an ensemble. Values are
obtained for the displacement �x, the rms radial velocity dispersion, vx, and the eccentricity e. With the exception of the first column, the applicability

of the functional form Cσ (t − t0)
1/2 is of course limited to the time interval before saturation is reached (see Figs 13 and 14).

Gravity only Gravity + drag Drag force only Tracer
[(2π/�)−1/2] × 10 m 100 m 1 km 10 m 100 m 1 km

Cσ (�x) [10−2 H] 0.77 ± 0.13 11.4 ± 0.02 0.95 ± 0.11 0.94 ± 0.10 7.71 ± 0.03 0.44 ± 0.12 0.01 ± 0.18 56.5 ± 0.01
Cσ (vx ) [10−3 cs] 3.53 ± 0.03 45.9 ± 3.75 2.54 ± 0.36 2.79 ± 0.04 45.1 ± 3.10 0.46 ± 0.01 0.03 ± 0.00 —
Cσ (e) [10−3 H/R] 2.77 ± 0.53 — 2.57 ± 0.04 2.58 ± 0.01 — 0.85 ± 0.01 0.03 ± 0.00 —

Figure 26. Velocity ACFs Sxx
g (left-hand panel) and S

yy
g (right-hand panel)

for massless tracers. From the ACFs (black lines, LHS axes), we obtain time-
integrated diffusion coefficients Dg(t) (grey line, RHS axes). The fits Sg ∼
e−τ/τc (dashed black) result in corresponding diffusion profiles (dashed
grey) which agree for τ � 2π/�. For τ � 1, Dg can be approximated by
the given theoretical estimate (dash–dotted line).

(right-hand panel), whereas there is considerable tension for the
radial direction (left-hand panel). Note that the time domain has
logarithmic scaling, which implies that the deviation in the shape
of the curve cannot be accounted for by changing the fit param-
eter τ c. Tentatively, an exponential decay law can be restored via
transformation to a generalized time variable τ̃ → τα with α � 0.7
– we however leave it open whether the observed issue bears any
relevance at the current stage of modelling.

Our fitted correlation times are τ (x)
c = 0.92 �−1 = 0.15×2π�−1

and τ (y)
c = 1.12 �−1 = 0.18 × 2π�−1. The obtained numbers are

in fact very close to the value of 0.15 orbits, reported in Fromang &
Papaloizou (2006). This supports the notion that τ c is characteristic
for MRI-typical Mach numbers and only weakly depends on the
actual amplitude of the turbulent stresses.

The relation from equation (25) is illustrated by solid grey lines
in Fig. 26, which represent the diffusion ‘constant’ Dg as a function
of time. For comparison, we also plot the diffusion profile corre-
sponding to the fitted solution (dashed grey lines). These curves
reasonably approximate the τ dependence of Dg for τ � 2π/�.
Note, however, that the fitted amplitude is somewhat smaller than
the rms velocities and the curves saturate at a lower value. This
means that the real correlation functions have a (stochastic) tail that
leads to a further growth in Dg for τ � 2π/�.

For times sufficiently greater than the correlation time of the flow,
the diffusion coefficient approaches a constant value approximated
by τ c 〈v2〉 � 0.035 as indicated by dash–dotted lines in the two
panels of Fig. 26. In accordance with a recent study by Madarassy
& Brandenburg (2010), the observed anisotropy in the streamwise
and cross-stream directions is rather weak.

Translated into a Schmidt number, we yield a value of Scg � 1.6,
which is considerably lower than the ratio between the Maxwell
and Reynolds stress, which fluctuates between 3 and 4. Our value

Figure 27. Velocity ACF Sp(τ ) (solid black line) for particles with radius
R = 5 m. The exponential decay is now modulated by epicyclic oscillations
and can be fitted via a function ∼ cos(2πτ�−1) e−τ/τc (white dashed line).
The envelope (dotted lines) is assumed to be relevant for the diffusion of the
guiding centre.

is a factor of about 2 smaller than the Eulerian value for vertical
diffusion found by Fromang & Papaloizou (2006). Schmidt numbers
obtained for small particles are usually inferred to be of the order of
unity (Johansen & Klahr 2005; Turner et al. 2006), and our results
are compatible with this.

A Schmidt number of the order of unity implies that small dust
grains that are strongly coupled to the gas will diffuse over large dis-
tances during protostellar disc lifetimes. Observations of crystalline
silicates embedded in circumstellar discs at significant distances
from their host stars, where temperatures are too low to explain in
situ crystallization of amorphous grains (van Boekel et al. 2004),
suggest that turbulent diffusion may indeed be responsible for trans-
porting grains from the hot inner regions of discs to the cooler outer
regions. It remains to be demonstrated, however, in a global, turbu-
lent disc model, whether or not a substantial number of grains can
be transported outwards against the net inward mass accretion flow
on to the star.

Particles with inertia. Unlike massless tracers, real particles are
subject to the additional body forces in the rotating coordinate
frame. Consequently, this leads to the excitation of epicyclic oscil-
lations. In the case of the Keplerian rotation, the associated angular
frequency κ is identical with the local rotation rate �. The ACF
for a perfect epicyclic oscillation is then simply proportional to
cos(2πτ�−1). This means that velocities are maximally correlated
if they are apart by a full period, and anti-correlated in between.

In general, the particles’ motion will, however, deviate from a
perfect epicycle – or, in other words, the defining elements of the
motion will change stochastically. With both the eccentricity and
the position of the guiding centre fluctuating, the coherence of
the motion is lost for larger times. This is illustrated in Fig. 27,
where we plot the velocity ACF for particles of size Rp = 5 m.
The epicyclic nature of the particle motion is clearly seen in the
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Table 3. Time-scales and Schmidt numbers Scp =
αss csH/Dp for the diffusion of the guiding centres
of heavy particles on excited epicyclic orbits.

Rp = 1 m 2 m 5 m 10 m 20 m

τ s (�−1) 0.23 0.91 5.71 22.8 91.4
τ c (�−1) 0.68 1.59 5.74 16.7 46.4
τ s/τ c 2.96 1.74 1.01 0.73 0.51
Scp 4.22 27.5 45.3 96.4 182.

Figure 28. Attempt to determine the Schmidt number Sc = Dg/Dp for the
diffusion of the guiding centres. The diffusion coefficient is estimated via
Dp � τc〈v2

gc〉, where vgc is obtained by smoothing over the epicycles (solid
lines). An alternative estimate (open squares) is derived independently via
the coefficients C2

σ (�x) in Table 2 – note that these do not depend on any
form of smoothing.

sinusoidal modulation of Sp. If integrated over time, the ‘diffusion’
process would rather resemble a shaking motion than a random
walk.

As a result, this renders the direct integration approach illus-
trated in Fig. 26 difficult. Taking the excellent agreement with the
functional dependence ∼ cos(2πτ�−1) e−τ/τc , we however conjec-
ture that the diffusive part of the overall motion can be recovered
from the exponential envelope function (dotted line in Fig. 27). In
Table 3, we report this correlation time as a function of particle
radius Rp and compare5 it to the stopping time τ s. The ratio τ c/τ s

is about unity for Rp = 5 m and roughly scales with the square-root
of the radius.

Given we can obtain a good estimate for the rms velocity of
the guiding centres, we can then compute Dp � τc〈v2

gc〉. Looking at
Fig. 11, it seems less than straightforward to deconvolve the random
motion of the guiding centre from the overall motion, especially
since the amplitude of the epicycles changes on comparable time-
scales. As a first attempt, we simply smooth out the oscillations
applying a box-car filter in time. The thus derived Schmidt number
Sc = Dg/Dp as a function of particle size is plotted in Fig. 28 for
various values of the filter size.

If we omit the smoothing, the results (although not strictly cor-
rect) reflect the kinetic energy in the epicyclic mode itself. In this
case, the gradual decoupling of the particles implies that 〈v2〉 de-
creases while τ c increases accordingly. Interestingly, this leaves
the overall particle diffusion rate unchanged. If we increase the
filter size, the epicyclic motion is attenuated and the size depen-
dence gradually becomes steeper. Reasonable convergence is ob-

5 The ratio τ s/τ c should not be confused with the Stokes number St = τ s/τ e

which measures the particle coupling with respect to the eddy velocity.

tained when the filter size approaches the critical value, equal to the
epicyclic period. In Table 3, we list the corresponding numbers.

Note that already for metre-sized objects the particle diffusivity
is reduced relative to Lagrangian tracers. We attribute this to the
effect that part of the kinetic energy is absorbed in ordered epicyclic
motion and is thus not available for particle diffusion (cf. section 3.2
in Youdin & Lithwick 2007). The partial slippage of the particles
through the gas as a result of weaker drag acceleration also causes
the particle guiding centre velocities to be reduced relative to the
fluid turbulent velocities.

It might be seen as a deficiency of the approach that it depends
on the proper choice of a box-car filter function. To reinforce the
validity of the derived Schmidt numbers, we therefore provide an
independent estimate from the squares of the coefficients Cσ (�x)
from Fig. 25. Defining the growing spread in the particles position
with time, these can similarly be interpreted as a diffusion constant.
For consistency, we have also checked that the fit constants Cσ (�x)
do not change significantly, when the epicyclic part of the motion
is smoothed. Considering that this second estimate solely relies on
positions while the original one is derived from velocity correla-
tions, the agreement seen in Fig. 28 (where we plot the different
estimates for the Schmidt number) is quite striking.

4 C O N C L U S I O N S

We have presented results from both local and global MHD simu-
lations which examine the evolution of planetesimals and boulders
of different size embedded in turbulent protoplanetary disc models.
The main aims of this work are to: determine the magnitude of the
velocity dispersion which is excited in a planetesimal swarm; de-
termine the rate of radial diffusion of the planetesimals; determine
under which conditions broad agreement is obtained in the results
from local shearing box simulations and global disc simulations.

We find that the magnitude of density fluctuations, and the asso-
ciated stochastic forces experienced by embedded planetesimals, is
sensitive to the dimensions of shearing box models. This appears to
be related to the fact that accurate modelling of the excitation and
non-linear steepening of spiral density waves requires boxes which
are elongated in the azimuthal direction (Heinemann & Papaloizou
2009b). The two-point correlation function for the perturbed surface
density also shows that coherent structures stretched by a distance
�6H are a common feature of MHD turbulence in discs, indicating
that shearing boxes in excess of this length-scale are required to
prevent the premature truncation of the gravitational field which
results from these structures. In addition to the magnitude of the
stochastic torques being dependent on the box size, we also found
that the correlation time of the fluctuating torques also depends on
the box size and aspect ratio, with smaller boxes generating shorter
correlation times. This is apparently due to the ability of waves to
propagate across the box on multiple occasions due to the periodic
boundary conditions employed, combined with the rate at which
they shear past the planet due to the background flow. Shearing
boxes with dimensions 4H × 16H × 2H were found to provide
converged results which agree well with the results from global
simulations.

We find that both global simulations and local shearing box sim-
ulations predict that rapid excitation of planetesimal random ve-
locities is expected in fully turbulent disc models whose local sur-
face densities are similar to the MMSN. A model whose turbulent
stresses generate α = 0.035 leads to rapid growth of the radial ve-
locity dispersion, σ (vr), via a random walk, such that after 1200
orbits at 5 au σ (vr) = 200 m s−1. A model with weaker turbulence
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(α = 0.017) gave rise to σ (vr) = 166 m s−1 over the same evolution
time. These random velocities are much larger than either the escape
velocities from planetesimals with sizes 1 or 10 km or the catas-
trophic disruption thresholds for collisions between bodies of sim-
ilar size (Benz & Asphaug 1999; Stewart & Leinhardt 2009), sug-
gesting that planetesimal collisions occurring in fully turbulent discs
similar to those considered in this paper will result in the destruction
of the planetesimals. We find that the expected equilibrium velocity
dispersion for 10 km sized planetesimals scales weakly with the
turbulent stress parameter such that σ (vr) = Kvrα

0.2. Extrapolation
of the simulation results presented in this paper to low values of α

suggests that even with α = 10−6, bodies with size 10 km are likely
to have random velocities which will cause catastrophic disruption
during mutual collisions. Values of σ (vr) small enough to allow run-
away growth of planetesimals to occur will be even more difficult to
achieve. For smaller bodies, which are more tightly coupled to the
gas via gas drag, we find that the equilibrium velocity dispersion
decreases, and reaches a minimum of σ (vr) � 20 m s−1 for bodies
of size 50 m in a disc with α = 0.035. For smaller bodies than these
the increasing influence of gas drag causes the velocity dispersion to
increase with decreasing size, and boulders with Rp = 1 m develop
random velocities which closely match the turbulent gas motions.

In addition to driving the growth of the velocity dispersion, or
equivalently the eccentricity, the stochastic forces experienced by
the planetesimals cause them to diffuse radially through the disc.
For large planetesimals with Rp = 10 km, radial drift through the
disc due to gas drag occurs very slowly, and their radial motion
is expected to be dominated by diffusion caused by the stochastic
gravitational field of the turbulent disc. Indeed, after a putative
disc lifetime of 5 Myr, the rms relative change in semimajor axis,
σ (�a/a), for a planetesimal swarm located at 5 au in a disc with
α = 0.035 will be 50 per cent, which would have been sufficient
to cause large-scale migration of the small body populations of the
Solar system during its formation. The fact that such large-scale
migration of large planetesimals does not appear to have happened
allows us to put constraints on the strength of α in the solar nebula.
A value of α � 10−5 would lead to a more reasonable σ (�a/a) �
0.1, consistent with the notion that the solar nebula had a dead zone
in the region where planet formation took place.

Smaller planetesimals with Rp = 10–100 m are expected to un-
dergo large-scale radial drift due to gas drag, and this is observed
in our simulations. The migration rate of 10 m size bodies in the
turbulent discs, relative to that expected for an equivalent laminar
disc model, is found to be very similar. Migration in turbulent discs
is found to be slower by a factor of approximately 2–3, and this
is due to radial structuring of the disc’s density profile, creating
regions where the pressure gradient (and hence rotational velocity
profile) is modified.

There have been a number of previous studies of the dynamical
evolution of planetary bodies embedded in turbulent discs. Nelson
& Papaloizou (2004) examined the torques experienced by low-
mass planets and suggested that random walk behaviour for such
bodies should be expected, as has been observed in this paper.
Nelson (2005) examined the orbital evolution of planets embedded
in turbulent discs, with particular emphasis on the semimajor axis
and eccentricity changes. The strength of the turbulence in that
model was somewhat weaker than considered in this paper (α �
5 × 10−3), although the disc model was somewhat more massive,
and in general it was found that the response of embedded bodies
to the stochastic forcing was stronger in that study, with larger
changes in semimajor axis and eccentricity being observed. The
primary reason for this discrepancy appears to be the fact that a

persistent vortex formed in the disc model considered by Nelson
(2005). Such vortices were also reported in the work of Fromang &
Nelson (2005), and interaction between embedded bodies and such
structures can lead to significant modification of the semimajor axes
and excitation of eccentricity. The models presented in this paper
do not have such vortex features, but during the early stages of this
project disc models with lower values of α were found to generate
such flow features quite readily. One possibility is that global disc
models which are close to the limits of resolving the MRI generate
substantial variations in α as a function of radius, which in turn
generate localized pressure maxima which are particularly prone
to the formation of vortices (Hawley 1987; Lovelace et al. 1999).
Models with smaller values of the plasma β parameter have stronger
field strengths and thus resolve the MRI more easily, and in addition
the stronger fields may act to inhibit vortex formation through the
action of local magnetic stresses. We have considered these models
in this paper.

Yang et al. (2009) recently considered the evolution of plan-
etesimal swarms using non-stratified shearing box simulations. The
planetesimals in that study experienced the fluctuating gravitational
field of the disc, but did not experience gas drag forces. Although
random walk behaviour of the particles in that study was observed,
in general it was found to be significantly weaker than we report
here, and one conclusion reached by these authors is that turbulence
is unlikely to cause the catastrophic disruption of planetesimals. The
primary reason for this appears to be the fact that most simulations
performed by Yang et al. (2009) used shearing boxes with 2H ×
2H × 2H. Test calculations with larger boxes presented in that pa-
per indicated a strong increase in the response of the particles to the
turbulence forcing as a function of increasing box size, suggesting
that the main reason for the discrepancy between the results is due
to this effect.

Ida et al. (2008) recently considered the evolution of planetesi-
mals embedded in turbulent protoplanetary discs by means of N-
body simulations combined with a prescription for planetesimal
stirring based on the work of Laughlin et al. (2004). In basic agree-
ment with the results we have presented in this paper, they show
that turbulence leads to the excitation of a large velocity dispersion,
which is likely to cause catastrophic disruption of planetesimals
rather than growth following mutual collisions, for a wide range of
turbulent strengths.

The simulations we have presented here use the simplest possible
numerical set-up: ideal MHD in non-stratified disc models. In a
future paper we will present the results of a similar study using
vertically stratified models with and without dead zones. This future
study will tell us whether we need to examine new paradigms for the
rapid growth of planetesimals, or whether instead runaway growth
can indeed occur within a dead zone of an otherwise turbulent
protoplanetary disc.
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