RT with hydrodynamics in multi-dimensions

A few important aspects that we managed to avoid so far

What did we skip?

- 1. A complete ALI loop
- 2. RT in 3D
- 3. RT in dynamic environment

The great loop using S_v

... or a great loop using J_{ν}

Opacity Tables

For optically thick parts we can assume LTE and precompute opacity tables. For stellar atmospheres Temperature-Pressure is sparsely populated:

Attenuation Operator

 Solution of RT over one grid cell can be written as:

$$\begin{split} I_{\nu}(\tau_{i}) &= e^{-(\tau_{i} - \tau_{i-1})} \cdot I_{\nu}(\tau_{i-1}) + \\ &+ \int_{\tau_{i-1}} S_{\nu}(t) \cdot e^{-(\tau_{i} - t)} dt \end{split}$$

 τ is the optical path along the ray, S is a source function

• If *S* can be approximated by a polynomial in τ we can take the integral above analytically:

$$I_{\nu}(\tau_{i}) = I_{\nu}(\tau_{i-1}) \cdot e^{-(\tau_{i} - \tau_{i-1})} + \alpha_{\nu,i} S_{\nu,i-1} + \beta_{\nu,i} S_{\nu,i} + \gamma_{\nu,i} S_{\nu,i+1}$$

Accelerated Lambda Iterations

Scattering requires Λ-iterations
ALI based on Gauss-Seidel algorithm
(Socas-Navarro & Trujillo Bueno 1997, ApJ 490, p.383)

Main idea:

Incoming
$$I_{v}(\tau_{i}) = I_{v}(\tau_{i-1}) \cdot e^{-(\tau_{i} - \tau_{i-1})} + \frac{1}{2} + \alpha_{v,i} S_{v,i-1} + \beta_{v,i} S_{v,i} + \gamma_{v,i} S_{v,i+1} + \alpha_{v,i} S_{v,i-1} + \beta_{v,i} S_{v,i} + \gamma_{v,i} S_{v,i+1} + \alpha_{v,i} S_{v,i+1} + \beta_{v,i} S_{v,i} + \gamma_{v,i} S_{v,i-1} + \alpha_{v,i} S_{v,i+1} + \beta_{v,i} S_{v,i} + \gamma_{v,i} S_{v,i-1}$$

Accelerated Lambda Iterations

1)
$$J \approx \frac{1}{2} \left(I_1^{\rightarrow} + I_1^{\leftarrow} \right)$$

$$J \approx \frac{1}{4} \left(I_1^{\rightarrow} + I_1^{\leftarrow} + I_1^{\downarrow} + I_1^{\uparrow} \right)$$

2)
$$J \approx \frac{1}{4} \left(I_2^{\rightarrow} + I_2^{\leftarrow} + I_1^{\downarrow} + I_1^{\uparrow} \right)$$
 $J \approx \frac{1}{4} \left(I_2^{\rightarrow} + I_2^{\leftarrow} + I_2^{\downarrow} + I_2^{\uparrow} \right)$

$$J \approx \frac{1}{4} \left(I_2^{\rightarrow} + I_2^{\leftarrow} + I_2^{\downarrow} + I_2^{\uparrow} \right)$$

How do we know when to stop?

Our options

- Mean intensities
- Level populations (best choice)
- Source function
- ...

Short or long?

- In case of distributed sources and optically thick medium both long and short characteristics work fine
- Feautrier readily produces mean intensity needed for statistical equilibrium calculations
- In case of small number of point sources and optically thin medium implementation is more critical the choice of characteristics

Hydro with RT

Hydro needs energy transported by radiation:

Energy flow between i to i+1 is $I_{\nu}^+ - I_{\nu}^-$ (Feautrier $V_{\nu}!$)

- We can compute V_v in two ways:
 - (short char.) integrate I_{ν}^{+} and I_{ν}^{-} separately
 - or (long characteristics) ...

RT Solver: Short Characteristics

Short characteristics

Interpolation in 3D

We find up-wind point by interpolating source function, opacity/scattering and intensity between 4 grid nodes

Velocities in 3D

Before interpolation source function and opacities must be converted to the laboratory reference frame

ALI in 3D and in parallel...

The most time consuming part is the source function integration but it can be done in all sub-cube in parallel! Propagation of intensity is serial but is just: I=aI+b

Ray sequence

Optically THIN versus optically thick

- Long characteristics: somewhat more expensive limit the number of rays
- Short characteristics: + and directions are needed anyways
- Two regimes: optically thick/thin cells
- Problems with point sources

Ray tracing Regular rays Rays associated with sources

Optically thin

interpolation

When using short characteristics collimated beams diverge.

Optically thick

"light diffusion" can actually be good!

Optically thin

Nearest neighbor or "Fat rays":

Lower order but no light diffusion

Testing

1D model replicated in a 3D cube

Applications: A-stars Convective zone is very thin but detectable in

- lines
- CO⁵BOLD model: "box-in-a-star"
- Predicted line asymmetry was wrong...at first

Applications: Betelgeuse

• Star in differe

Applications: Betelgeuse

- COBOLD model: "star-in-a-box"
- Star in different wavelengths

