Observational Astronomy

TELESCOPES, ACTIVE AND ADAPTIVE OPTICS

Kitchin pp.109-130; Chromey 169-190

Ritchey-Chrétien telescope

Parabolic primary and hyperbolic secondary solve main aberration problems (spherical and coma) in a rather large field of view (tens of arcminutes). These advantages require to use Cassegrain or Nasmyth focus.

Schmidt-Cassegrain

- RC provides very good image quality in a relatively modest FoV (1°×1°)
- For larger FoV a refractive corrector is needed.
- These are known as Schmidt-Cassegrain or Schmidt camera:

Alternative to RC: Gregorian system

Concave secondary <u>after</u> the primary focus:

Here is a cool picture of the LBT

Materials for mirrors

Low thermal expansion: zerodur & sitall

Astro-sitall blank at LZOS (VST, VISTA, SALT, LAMOST, OWL?) mean linear coefficient of thermal expansion within temperature range -60° to +60° C is <10⁻⁸ cm °C⁻¹

Zerodur VLT primary at REOSC

More materials

Silicon Carbide

- Low thermal expansion (not as good as glass)
- Very light

SiC 60 cm X-ray mirror Weight: 6.2 kg

- Very hard, keeps the shape well
- Hard to make in large pieces
- Fragile, difficult to process

Coatings

Mirror must reflect light:

- Aluminum (protected by SiO)
- Silver-based coatings. Also needs protection.
- Lens coating must not reflect light: MgF₂

Hard Gold coating results (from 0.7 µm to 25 µm)

JWST mirror coating

Point Spread Function

- PSF is the intensity distribution in the focal plane of a telescope produced by a point source.
- Ideal PSF for an axially symmetric system is know as Bessel function.

Large thin mirrors are shaped by support system: VLT mirror is 8.2m in diameter and only 18 cm thick!

Active optics

ACTIVE OPTICS

 Compensates for thermal and gravity distortions;

 Uses stored parameters;

•Corrects at low frequency: 30 s cycle;

 Uses hundreds of actuators.

Segmented mirror (Keck, 10m)

ELT (39m): 798 segments!

Active optics

- For solid mirror the shaping is achieved by pushing/pulling and several hundred places.
- For segmented mirrors, segment orientation is adjusted based on preset parameters and edge sensors.
- Parameters are obtained by looking at point sources at different altitudes and at different temperatures.

The *Strehl* ratio is the ratio of peak intensities in the observed and ideal point spread functions (Born and Wolf 1999).

Why do we need adaptive optics?

Atmospheric turbulence distorts the wave front.

Three ways of looking at the focal plane image:

- 1. Non-collimated beams (speckles)
- 2. Curved wavefront (phase shifts)
- 3. Changing intensity distribution

Wavefront sensor

- Shack-Hartmann
- Curvature sensor
- Pyramid WFS

20

Sensor implementation

Wavefronts must measured many at 100 kHz rate!

Sensor chip on a printedcircuit board.

A corner of the 1cmX1cm wavefrontsensor chip implemented in standard CMOS. The green elements are the position-sensitive detectors.

Deformable mirror

Various shapes of a deformable mirror with 37 actuators

Closing the loop

Laser Guide Star

The Laser Guide Star Facility at one of the 8m ESO telescopes on Paranal

VLT NACO: PSF and resolution improvements

AO result

- Find a telescope with Silicon Carbide mirror. Explain the reason to use this material?
- When using adaptive optics, what are the pluses and minuses of using natural and laser guide star?

Direct Imaging and Photometry Presentations: Specialized telescopes