Introduction to Polarimetry

Lecture 7

Oleg Kochukhov (oleg.kochukhov@physics.uu.se)

November 4

Outline

Mathematical description of polarised light

Physical processes creating polarisation

Examples of astrophysical polarimetry

Electromagnetic wave

 $\boldsymbol{E}(t) = \{E_x(t), E_y(t)\} \quad \begin{aligned} E_x(t) &= E_x(0)\cos\left(\omega t - \phi_1\right) \\ E_y(t) &= E_y(0)\cos\left(\omega t - \phi_2\right) \end{aligned}$

Polarisation = evolution of *E*(*t*)

Polarised EM waves

Polarisation is defined by $E_x(0), E_y(0), \delta \equiv \phi_1 - \phi_2$

Linear polarisation:

$$\phi_1 = \phi_2$$

$$E_x(t) = E_x(0) \cos(\omega t)$$

$$E_y(t) = E_y(0) \cos(\omega t)$$

Polarised EM waves

Polarisation is defined by $E_x(0), E_y(0), \delta \equiv \phi_1 - \phi_2$

Circular polarisation:

$$\phi_2 = \phi_1 \pm \pi/2$$
$$E_x(0) = E_y(0) = E_0$$
$$E_x(t) = E_0 \cos(\omega t)$$
$$E_y(t) = \pm E_0 \sin(\omega t)$$

Polarised EM waves

Polarisation is defined by $E(0) = E(0) = \delta$

$$E_x(0), E_y(0), \delta \equiv \phi_1 - \phi_2$$

Elliptical polarisation (general case):

$$E_x(0) \neq E_y(0)$$

$$\phi_1 \neq \phi_2 \neq m\pi/2$$

Stokes parameters

Astronomical observations: average light intensities instead of EM fields

$$I = \langle E_x^2 \rangle + \langle E_y^2 \rangle$$

$$Q = \langle E_x^2 \rangle - \langle E_y^2 \rangle$$

$$U = 2 \langle E_x E_y \cos \delta \rangle$$

$$V = 2 \langle E_x E_y \sin \delta \rangle$$

$$S_1^{33}$$

G. Stokes (1852)

Poincare sphere $\{S_1, S_2, S_3\} = \{Q, U, V\}$

IC

Stokes parameters

Operational definition using ideal polarisers

intensity measured through perfect right-hand and $I_{\circlearrowright}, I_{\circlearrowleft}$ left-hand polarizers

Sign conventions

+V: clockwise rotation of electric vector

+U: counterclockwise rotation by 45° from +Q

- +Q: freely chosen
- Local meridian
- Instrument
- Plane of scattering
- Solar limb

Normalised and fractional polarisations

Normalised to Stokes I

$$P_X = X/I, X = Q, U, V$$

- Normalised to continuum of Stokes / $P_X^{(c)} = X/I_c, X = Q, U, V$
- Fractional linear polarisation

$$P_L = \sqrt{Q^2 + U^2} / I$$
$$\theta = \frac{1}{2} \arctan(U/Q)$$

Mueller matrix formalism

Stokes vector changes due to an interaction with matter or astronomical instrument

$$oldsymbol{S} = \{I, Q, U, V\}^T$$
 $oldsymbol{M}$ is 4 x 4 Mueller matrix

$$\boldsymbol{S}_1 = \boldsymbol{M} \boldsymbol{S}_0 \qquad \qquad \boldsymbol{S}_1 = \boldsymbol{M}_n \dots \boldsymbol{M}_2 \boldsymbol{M}_1 \boldsymbol{S}_0$$

ideal reflection

ideal linear polariser

Macroscopic polarisation

- Every EM wave is intrinsically polarised
- "Natural", unpolarised light contains a mixture of EM waves of all possible polarisation states
- Macroscopic polarisation signal = statistical preference of a certain polarisation state

Polarisation in everyday life

Reflection from water/ice

Thru a Standard Lens

Thru a Polarized Lens

Rayleigh scattering

Polarisation in everyday life

Polarisation mechanisms

Anisotropic scattering/reflection

- continuum
- Differential absorption/scattering by aligned non-spherical grains
- Synchrotron radiation from charged particles in a magnetic field

- continuum
- Magnetic line polarisation (Zeeman effect) lines
- Magnetic depolarisation of continuum lines + radiation (Hanle effect) continuum

Scattering polarisation

- Any microscopic scattering (Thomson, Compton, Rayleigh, etc.) creates linear polarisation
- Anisotropy leads to net macroscopic polarisation

Polarised view of stellar environments

Massive disk around a young star

Intensity + linear polarisation

Polarised view of stellar environments

Ring around a young star

Intensity

Linear polarisation

Polarised view of stellar environments

Polarimetry of solar system bodies

Polarimetry of solar system bodies

Cellino & Bagnulo (2015)

Linear polarisation as a function of phase angle for low-albedo (Ceres, filled symbols) and high-albedo (Nysa, open symbols)

Albedo from polarimetric slope $\log A = C_1 \log h + C_2$

Polarimetry of exoplanets

Scattering polarisation modulated by phase angle

Berdyugina et al. (2011)

Polarimetry of biospheres

Red edge polarisation signature of chlorophyll

Berdyugina et al.

Polarimetry of biospheres

Red edge polarisation signature of chlorophyll

Observing Date	25-Apr-2011:UT09	10-Jun-2011:UT01
View of Earth as seen from the Moon		
Sun-Earth-Moon phase	87 deg	102 deg
ocean fraction in ES	18%	46%
vegetation fraction in ES	7%	3%
tundra, shrub, ice and desert fraction in ES	3%	1%
total cloud fraction in ES	72%	50%
cloud fraction $\tau > 6$	42%	27%

Earthshine polarisation spectra

Sterzik et al. (2012)

Zeeman effect

Atomic Hamiltonian in the presence of a magnetic field

$$H = -\frac{\hbar}{2m}\nabla^{2} + V(r) + \xi(r)\mathbf{L}\cdot\mathbf{S} + \left[-\frac{e}{2mc}\mathbf{B}\cdot(\mathbf{L}+2\mathbf{S}) + \frac{e^{2}}{8mc^{2}}B^{2}r2\sin^{2}\theta\right]$$
(1) (2) (3) (4) (5)

P. Zeeman (1896)

- B: magnetic field vector (*
 L: orbital angular momentum (*
 S: spin angular momentum (*
- (1): kinetic energy
 - (2): potential (Coulomb) energy
 - (3): spin-orbit coupling energy
 - (4): linear magnetic term

(5): quadratic magnetic term

(5) << (4) << (3): linear Zeeman effect
(5) << (4) & (3) << (4): Paschen-Back effect
(4) << (5) & (3) << (5): quadratic Zeeman effect

Zeeman effect

Splitting and polarisation of spectral lines

Zeeman effect

Zeeman splitting patterns

Zeeman splitting [G, Å] $\Delta \lambda_{\sigma-\pi} = 4.67 \times 10^{-13} \bar{g} \lambda_0^2 B$ 1G=10⁻⁴ T = 0.7 km s⁻¹ / kG for
1kG=0.1 T $\lambda_0 = 5000$ Å, $\bar{q} = 1$

Polarisation in weak field
I \approx I_0, Q \approx 0, U \approx 0
I \approx I_0, Q \approx 0, U \approx 0
V \approx -4.67 \times 10^{-13} \overline{g} \lambda_0^2 B \cos \theta \frac{\partial I}{\partial \lambda \lambda \rangle}

Solar magnetism

Sunspots are magnetic

G. Hale (1908)

Zeeman diagnostics

- Strong fields: Zeeman slitting and Stokes QUV
- Weak fields: Stokes V
- Polarisation amplitudes: 10⁻² 10⁻³

Magnetograms

Line of sight field component estimated from a single line

Magnetograms

Line of sight magnetic field component estimated from wings of a single line

Vector magnetograms

Full magnetic field vector from modelling of *IQUV* parameter profiles of one / few spectral lines for each image pixel

Vector magnetograms

Results obtained with HMI SDO data

Solar activity cycle

Cyclic evolution of interior and surface magnetic fields

The Magnetic Butterfly Diagram

Scattering polarisation

Solar limb => anisotropic illumination + scattering
 => linear polarisation

Hanle effect

- Solar limb => anisotropic illumination + scattering
 => linear polarisation
- Weak (0.1-100 G) field
 > depolarisation and rotation of polarisation plane

"Second" solar spectrum

Stokes Q spectrum at the solar limb

Stellar magnetism

- Sun and cool stars:
 - fields are generated by dynamo
 - fields are weak, complex, evolving
- Hot stars:
 - fields are fossil remnants
 - fields are strong, globally organised, stable

Stellar Zeeman signatures

Disk-integrated Stokes spectra: a sum of Dopplershifted contributions from the entire stellar disk

Strong-field stars

Zeeman splitting in Stokes *I*; Stokes *V* signatures in individual lines in high-resolution spectra

very strong field

moderately strong field

Weak-field stars

- Stellar surfaces are unresolved => spatial resolution can be traded for wavelength coverage
- Multi-line techniques (Least-Squares Deconvolution)

 Polarimetric sensitivity 10⁻⁵ – 10⁻⁶ for bright stars; possible to detect fields ~0.5 G

Zeeman Doppler imaging

Detailed maps of vector fields from modelling of Stokes *IQUV* time series of individual/average lines

Radial field

Horizontal field

Zeeman Doppler imaging

Detailed maps of vector fields from modelling of Stokes *IQUV* time series of individual/average lines

II Peg (active, rapidly rotating)

18 Sco (solar twin)

Observational requirements

- Sensitivity to weak signals
- Tradeoff between sensitivity/image size/spectral resolution/wavelength coverage/time resolution

