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Source with Φs< λ/D

PSF

The information on your object is lost. 
You NEED more spatial resolution from your instrument. 
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PSF

D

Source with Φs< λ/D

The signal of the source is found again but under the appearance of fringes

Interferometric signal

D DB

but Φs∼ λ/B < λ/D
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The interferometric signal

PSF of the
telescope

Interferometric
signal

λ/D

λ/B

Fringe contrast is given by : 

=
Imax - Imin

Imax + Imin

V

An Interferometer is measuring the contrast of the total fringe pattern :

Φs
+
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V= |Ô (u ,v) /Ô (0,0) |
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Some Fourier (Hankel) transformations

(*) r = (α² + δ²)1/2 (*) q = (u ² + v ²)1/2 = Bp/λ   
(**) J1c(X) = J1(X)/X
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Plane of the star

Bx

By

B p
=B=130 m

PA

T0

Plane of the star

B p
=100 m

Bx

BY

PA

T1

After an Earth rotation

The uv-plane (part I)

spatial frequencies (u,v) : coordinates (Bx,By) of the projected baselines (Bp) seen from

the star and divided by the observing wavelength (λ)

u = Bx/λ = Bp.cos(PA) / λ

v = By/λ = Bp.sin(PA) / λ

PA

EarthEarth planeplane

Bp/λ λ λ λ = √= √= √= √u² + v²



after 1 hour of observation
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The uv-plane (part II)

Observation of R Scl (α=01:26:58 ; δ=-32:32:35) at the date of 19 August 2011 
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Observation of R Scl (α=01:26:58 ; δ=-32:32:35) at the date of 19 August 2011 

This kind of coverage is very
expensive in time !
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What is the appropriate uv coverage?

It depends on the complexity of the object

Is it really necessary to get a very large uv-coverage for such an object?

[hot star]

Is it necessary to get a very large uv-coverage for this one?

[Post-AGB (triple system +
envelope + disk)]
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The Phase in Interferometry:  V = V e-iφ

α0

• Binary source at angle α0 => 

displacement of the fringes by OPD = α0.B

λ
πφ OPD2=

B

α0.B
information on the

asymmetries of an object

φφφφ12 = φφφφ12
obj + δδδδ2 – δδδδ1 

Van Cittert-Zernike theorem

φ(u,v) = arg[Ô (u,v)] = atan[Im (Ô)/R e(Ô)]

Atmospheric noise



The Closure Phase

Observed Object Atmosphere
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The Closure Phase

Observed Object Atmosphere

φφφφ12       = φφφφ12
obj +   δδδδ2 – δδδδ1

φφφφ23       = φφφφ23
obj +   δδδδ3 – δδδδ2

φφφφ31       = φφφφ31
obj +   δδδδ1 – δδδδ3

φφφφ123      
= φφφφ12 + φφφφ23 + φφφφ31 = φφφφ12

obj + φφφφ23
obj + φφφφ31

obj

T1

T2

T3

Object Only!!



UD of 9 mas diameter with a spot of 2 mas diameter on its
surface representing 25% of the total flux.

Fringe contrast Closure Phase

An Example

UD
UD+spot



Real visibility data points (AMBER with 3 telescopes)



Closure Phase data
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Model vs Data (part II)

2.17 µm
continuum

2.38 µm
CO-line

10 mas



The calibration in Interferometry
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The need for accurate determination of the calibrator diameters

Calibrated visibility

where

System response

Unresolved calibrator

Error on visibility
solely due to 
uncertainty on the
calibrator diameter

Resolved calibrator
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Effects of diameter uncertainties on the visibility accuracy

∆φ∆φ∆φ∆φcal/φφφφcal= 3% ∆φ∆φ∆φ∆φcal/φφφφcal= 1%



ASPRO

The Astronomical Software to PRepare Observations



http://www.jmmc.fr/aspro_page.htm

How to launch ASPRO in the web?



The interface

– WHEN: to define the date and time of the simulated observation

– WHERE: to select the interferometer (VLTI, IOTA, CHARA, …) and the number of telescopes

– WHAT: to define the target properties (name, coordinates, brightness);

– OBSERVABILITY/COVERAGE: to define the VLTI configuration to be used for the observations

– MODEL/FIT: to calculate and plot interferometric observables and their associated

uncertainties according to the chosen model (UD, LD, Binary, …) and the corresponding baseline

configuration.
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Observability

delay line

Night

UT time

LST time



uv-coverage (part I)



uv-coverage (part II)



uv-coverage (part II)
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Resolved binary Uniform disk + 
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Resolved binary Uniform disk + 
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Model/Fit (part IV)
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DEFINE THE BEST CALIBRATOR 
http://www.jmmc.fr/searchcal_page.htm

How to launch SearchCal in the web?



CALIBRATORS



CALIBRATORS

� Choose your observing wavelength (AMBER-H/K or MIDI-N) 



CALIBRATORS

� Choose your observing wavelength (AMBER-H/K or MIDI-N) 

� The maximum baseline of your observation (limit of sensitivity)



CALIBRATORS

� Choose your observing wavelength (AMBER-H/K or MIDI-N) 

� The maximum baseline of your observation (limit of sensitivity)

� The science target



CALIBRATORS

� Choose your observing wavelength (AMBER-H/K or MIDI-N) 

� The maximum baseline of your observation (limit of sensitivity)

� The science target

� The maximum location around the science target (close enough to avoid
atmospheric biases)



CALIBRATORS

� Choose your observing wavelength (AMBER-H/K or MIDI-N) 

� The maximum baseline of your observation (limit of sensitivity)

� The science target

� The maximum location around the science target (close enough to avoid
atmospheric biases)

� And get your calibrators (from the various catalogs existing)
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� Separation from the science target in degree



Table

� Separation from the science target in degree

� Evaluation of the corresponding equivalent UD visibility value
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Selection criteria

� location of the calibrator (as close as possible)

� brightness (as bright as possible to get a high Signal to Noise ratio)

� spectral type and luminosity (avoid complex object like cool stars)

� visibility and accuracy (avoid too large objects -> V small -> poor S/N ratio)

� variability (avoid to use variable objects that may lead to temporal biases
in the calibrated measurements)

� multiplicity (avoid multiple object that may lead to a wrong interpretation of 
the calibrated measurements)



DEFINE THE BEST CALIBRATOR

HD35497


