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Spectroscopic
i methods

= Different purposes require different
iInstruments
= Main spectroscopic methods:
s Spectrophotometry
= Low resolution
« Long siit, high resolution
« High resolution
= Spectroscopic observations are

characterized by: dispersion/spectral
resolution and spectral range




i Spectrophotometry

= Typical goal: search for objects with specific

spectral features

Method 1: objective prism, te
the source through a prism, t
point source looks like a smal

escope "sees"
nerefore each

spectrum

Method 2: narrow band filters for given
spectral features. Often such filters have the
possibility to change central wavelength by

changing temperature/pressu
slit!

re. There is no
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i A bit of math:

= Expression for angular dispersion is

found by differentiating the grating eq.:
mdA =0 cos fBdf

dA
— =05 CoS /B / m  Angular dispersion

dp
= Linear dispersion is readily obtained for

a given focal length
dA _5 cos [

dx m-f.

Linear dispersion



i ... and some more ...

= Angular resolution. Think of a grating as
a mirror, its diffraction angle is given by:
A ﬂ - / W - cos /B Projected size

of the grating
. and combining it with the angular

dlsper5|on equation: o

—=R= m =m-N
Reso]vmgﬁ depends in the number of

illuminated grooves/




i Free spectral range

The free spectral range (FSR) of a diffraction grating
is defined as the spectral interval in a given order

which does not overlap with the wavelengths in
adjacent orders.

A O SIn O SIn
66((0 FSR:ﬂ’m_ﬂ“mH = IB_ IB:
ot ’ m m + 1
© m:- (m + l)
Order m+1 For a prism FSR is the

whole sp. range!



* Grating spectrometers

Collimator o
cY

| ks
Slit




Real world: the seeing and the
pixel size

= The angular slit size as seen by the grating is:

Ao =s/ [

where f_, is the focal length of the collimator and s is the

linear width of the slit. Grating equation connects this to the
angular resolution element:

cosa =—Afcos [

coll

Aacosa = s/
S+ COS

‘AIB‘ ) Jeon "COS p

= If we try to match this to the angular resolution of the grating
we end up with too narrow slit.

= In practice, we select the slit, translate this to angular resolution
and select the camera focal length to match the pixel scale.
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i Putting some numbers

Home work

The spectrograph for the BWT is based on a
20 cm grating with a blaze angle of 66.5° and
/2 grooves per mm

Find angular resolution of the grating at 4000 A, 6000 A and 8000 A

Find optimal slit size with collimator length of 80cm

Take a realistic seeing (2") and the corresponding entrance slit size.
Compute the resolution R and the camera focal length to achieve 3
pixel sampling of a resolution element (I micron pixel size)

Why is it hard to make high-resolution spectrometers for large
telescopes? How the size of the primary mirror affects parameters
and dimensions of a spectrometer? 0



i Modern concept

= Echelle gives high resolving power (high
orders) and high efficiency (no dark stripes)

= Spectral orders overlap (maximum reflection
at blaze angle) = order selection or cross-
disperser is needed (e.g. grating or prism)

= Central wavelength of order 1 is given by:
A =20sin6, _/m

= With a cross-disperser the whole spectrum is
packed in a rectangular 2D format, perfect for
an electronic detector ”



Spectrograph designs
Echelle, white pupil (e.g. SALT-HRS)

Blue camera Red camera
]

Red pupil

_ transfer mirror
Blue pupil

transfer mirror

Primary mirror \
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Echelle grating



Echelle focal plane layout
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‘L Side effects

= Orders are curved
= Order spacing changes
= Short FSR

= Camera aberrations directly affect

resolution E——
= Hard to calibrate=——

fringing




Other spectroscopic
i instruments

= IFU instruments
2D image slices are re-arranged in 1D
slit. E.g. SINF™"" |

= Multi-object instruments. I———
E.g. FORS, FLAMES




http://www.physik.uni-osnabrueck.de/kbetzler/sos/fabryperot.pdf

Fabry-Perot interferometer

= The resolution is determined :
in the same way as for a gra ;

= Transmission/Reflection
ratio depends on the

wavelength

= [ he ratio between the
reflection and the
transmission peaks

is CaIIedfinesse
s F-P is often used as

tunable filter
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