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Gas dynamics

• Assumptions

– particle mean free paths � size of the region

→ volume elements with average velocity u, density ρ,

pressure P , temperature T → hydrodynamics equations:

conservation of mass, momentum and energy

– local equilibrium → Maxwell distribution for particle

velocities within a volume element

– plane parallel flow geometry (1D) → volume element dV

is a cuboid with length dx along the flow and unit area

perpendicular to flow

– first order

• Conservation equations

– Mass conservation (continuity equation)

∗ mass of dV = ρ dx

∗ no sources or sinks of material within dV

∂
∂t(ρdx) =

incoming
︷︸︸︷
ρu −

outgoing
︷ ︸︸ ︷

(ρ + dρ)(u + du)
= −(ρdu + udρ + dρdu)

∂
∂t(ρ) + ∂

∂x(ρ · u) = 0

∗ mass loss and gain terms could be added

∗ time-independent: ρu = constant
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– Momentum conservation (Euler’s equation)

∗ momentum of dV = ρdx · u

∗ change of momentum due to fluid flow

and gas pressure acting on the surface of dV

∂
∂t(ρudx) = ρu2 − (ρ + dρ)(u + du)2

︸ ︷︷ ︸
−dP

ρu2 + 2ρudu +ρdu2+u2dρ +2udρdu + dρdu2

ρ∂u
∂t + u

∂ρ/∂t
︷ ︸︸ ︷

(−u
∂ρ

∂x
− ρ

∂u

∂x
) +2ρu∂u

∂x + u2∂ρ
∂x = −∂P

∂x

∂u
∂t + u∂u

∂x = −1
ρ
∂P
∂x

∗ further terms could be added,

accounting for forces due to

gravity,

magnetic fields,

radiation field,

viscosity

∗ viscous force: due to “internal friction” in the fluid

(resistivity of the fluid to the flow)

∝ ∂2u
∂x2

usually much smaller than force due to gas pressure,

important in high-speed flows with large velocity gradients

∗ time-independent: ρu2 + P = constant
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– Energy conservation

∗ thermodynamics – 1st law:

heat change in a system

= change in internal energy + work done on surroundings

dQ = dU + PdV

∗ internal energy for ideal gas:

monoatomic: kinetic energy of translations

U = 3

2
kT per particle

diatomic: + kinetic energy of rotations

U = 5

2
kT

polyatomic: U = 6

2
kT

∗ heat change given by specific heat capacities

constant volume (dV = 0): (dQ
dT )V = (dU

dT )V ≡ McV

→ dQ = McV dT + NkdT (with ideal gas eos)

constant pressure: (dQ
dT )P ≡ McP = McV + Nk

M . . . total mass, N . . . total number of particles

∗ ratio of specific heat capacities

γ ≡ cP
cV

=
cV +Nk/M

cV

monoatomic gas : cV =
1

M

dU

dT
=

d

dT

3

2
kT

N

M
→ γ =

5

3

diatomic: γ = 7
5

polyatomic: γ = 4
3
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– Energy conservation - limiting cases

∗ adiabatic flow – negligible heat transport:

dQ = 0

→ PdV = −McV dT

use ideal gas law and thermodynamic relations

→ P = const. · ργ

example: Supernova explosion

∗ isothermal flow – extremely efficient heat transport:

heat transport timescale � dynamic timescale

→ balance between heating and cooling

→ constant temperature

ideal gas eos: P = ρ kT
µmu

→ P = const. · ρ

example: HII region

∗ both: P ∝ ρn
with n = γ or n = 1
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• Perturbations in a gas

– Initial conditions: P = P0, ρ = ρ0, u = u0 = 0

– Small perturbations P = P0 + P1, ρ = ρ0 + ρ1, u = u1

– Conservation equations:

∂ρ1
∂t + ρ0

∂u1
∂x = 0

[

−u1
∂ρ1
∂x − ρ1

∂u1
∂x

]

ρ0
∂u1
∂t + ∂P1

∂x = ρ0
∂u1
∂t + a2

0
∂ρ1
∂x = 0

[

−ρ1
∂u1
∂t − u1

∂u1
∂x

]

P1 = P−P0 ∝ (ρ0+ρ1)
n−ρn

0
∝ nρn−1

0
ρ1 = n

P0

ρ0

ρ1 ≡ a2
0ρ1

[
+O(ρ2

1
)
]

→
∂2ρ1
∂t2

− a2
0
∂2ρ1
∂x2 = 0

→ sound wave (acoustic wave) with constant sound speed a0

– Large perturbations

sound speed depends on local ρ and P : a2 = nP
ρ

isothermal flow: a2 ∝ ρ
ρ = const.

adiabatic flow: a ∝ ργ/2

ρ1/2 ∝ ρ1/3 for γ = 5
3
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– Values of sound speed are of the same order

as mean thermal velocities:

a =

√

5

3

kT

µmu
, 〈v〉 =

√

8

π

kT

µmu

– Sound crossing time tcross = L/a

∗ time it takes for signal to cross a region of size L

∗ compare tcross to evolutionary timescale

∗ pressure gradient will be smoothed out

within sound crossing time

∗ changes occurring on timescales < tcross will survive

∗ changes occurring on timescales > tcross

will be damped

– Mach number ≡ gas velocity/sound speed

M = u/a
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• Shock waves

– What are shock waves?

see F.H. Shu, The Physics of Astrophysics,

Vol.II: Gas Dynamics, University Science Books, 1992,

Figures 15.2, 15.3, 15.4

– Shocks in astrophysical situations

∗ cloud-cloud collisions

∗ HII regions expanding into neutral medium

∗ stellar wind encountering medium

∗ supernova blast waves

∗ accretion onto stars

– Shock jump conditions:

mass, momentum, energy conservation across shock;

also called “Rankine-Hugoniot” conditions

– Analysis of jump conditions

for dimensionless parameters

∗ conditions:

1: specific total energy εT constant across shock

2: entropy increases across shock

∗ results:

1: specific internal energy εI increases across shock

→ temperature increases

2: specific kinetic energy εK decreases across shock

→ velocity decreases

→ density and pressure increase

3: Mach number > 1 pre-shock and < 1 post-shock

→ only supersonic gas can produce a shock,

gas is slowed down to subsonic by shock
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η

εΤ

Jump conditions for dimensionless parameters

η

εΙ

η

εΚ

η

M

1 η

σ
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– Quantitative results for strong shocks:

∗ jump conditions:

ρ0u0 = ρ1u1

P0 + ρ0u
2

0
= P1 + ρ1u

2

1

u2

0

2
+

γ

γ − 1

P0

ρ0

=
u2

1

2
+

γ

γ − 1

P1

ρ1

∗ in terms of upstream Mach number M0

M 2

0
=

u2

0

a2

0

=
ρ0u

2

0

γP0

=
µmuu

2

0

γkT0

1: eliminate p1 and u1 from jump conditions

ρ1

ρ0

=
u0

u1

=
(γ + 1)M 2

0

(γ − 1)M 2

0
+ 2

2: eliminate ρ1 and u1 from jump conditions

P1

P0

=
2γM 2

0
− (γ − 1)

γ + 1

3: combine 1 and 2 with ideal gas law

T1

T0

=
[(γ − 1)M 2

0
+ 2][2γM 2

0
− (γ − 1)]

(γ + 1)2M 2

0

∗ set M0 � 1 and γ = 5

3

ρ1

ρ0

=
u0

u1

≈
γ + 1

γ − 1
= 4

P1 ≈
2γ

γ + 1
M 2

0
P0 =

2

γ + 1
ρ0u

2

0
=

3

4
ρ0u

2

0

T1 ≈
2γ(γ − 1)

(γ + 1)2
T0M

2

0
=

2(γ − 1)

(γ + 1)2
µmu

k
u2

0
=

3

16

µmu

k
u2

0
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– Strong shock moving in the rest frame

∗ change of reference frame

∗ shock velocity Vs

∗ upstream gas velocity v0, downstream v1

∗ transformation

u0 = v0 − Vs ≈ −Vs (Vs � v0)

u1 = v1 − Vs

∗ post-shock velocity

u1

u0

=
Vs − v1

Vs
=

1

4

v1 =
3

4
Vs

→ post-shock gas moves in the same direction as the shock

→ post-shock velocity is 3/4 of the shock velocity

∗ post-shock pressure

P1 =
3

4
ρ0V

2

s

∗ post-shock temperature

T1 =
3µmu

16k
V 2

s

∗ post-shock specific internal energy

eI,1 =
3

2

P1

ρ1

=
3

2

3/4ρ0V
2

s

4ρ0

=
9

32
V 2

s

∗ post-shock specific kinetic energy

eK,1 =
1

2
v2

1
=

9

32
V 2

s
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• Cooling in shocked gas

– Large range of shock velocities

→ large range of post-shock temperatures

– Cooling processes

∗ collisional excitation or ionization

followed by radiative de-excitation

∗ bremsstrahlung at ≈ 108 K

∗ type of radiation depends on temperature

→ cooling function

∗ between 105 and 108 K:

cooling rate increases with decreasing temperature

→ gas at these temperatures is thermally unstable

– Cooling time tc:

ratio between post-shock specific internal energy and

cooling rate per unit mass

– Cooling length lc:

distance travelled by gas during tc

– If cooling rate ∝ T−1/2 → tc ∝ V 3

s and lc ∝ V 4

s

→ depend strongly on shock velocity

– If lc � characteristic size of region

→ post-shock gas “immediately” cooled to pre-shock T

→ T = const. → “isothermal” shock

→ with isothermal sound speed (γ = 1), for strong shock:

u0

u1

=
ρ1

ρ0

= M 2

0

→ no limit for compression

∗ in fixed reference frame: v1 ≈ Vs

→ post-shock gas moves with the same speed as the shock

∗ post-shock pressure: P1 = ρ0V
2

s
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Interstellar cooling function
(Dalgarno & McCray 1972)

x ... fractional ionization

x =

CII, OI

Lyα

forbidden lines
(optical, IR)

resonance
lines
(far UV,
soft X-ray)

bremsstrahlung
(radio)

H exc./ion.


