

The Physics of the Interstellar Medium

Ulrike Heiter Contact: 471 5970 ulrike@astro.uu.se

www.astro.uu.se

Matter between stars

- Average distance between stars in solar neighbourhood:
 1 pc = 3 x 10¹³ km, average star diameter: 10⁶ km
- => part of space occupied by stars: $(10^6 / 3 \times 10^{13})^3$ = about 10^{-22}
- Upper limit for matter other than known stars
 - Oort limit = total matter density in galactic plane from gravitational acceleration of stars = 0.1 M_{sun} pc⁻³
 - Density of known stars = 0.05 $M_{sun} pc^{-3}$
 - Upper limit for IS density = 10^6 atoms m⁻³

Matter between stars

- Observational evidence for matter between stars (up to 1930s):
 - Optical images: dark clouds and diffuse bright nebula
 - Photometry: Interstellar extinction and reddening
 - Spectroscopy: IS absorption lines in stellar spectra: stationary in spectroscopic binary spectra, different doppler shift, strength increasing with distance

© Anglo-Australian Observatory

CG 4

Star Formation Region IC 1396 Construction and the day of the part of construction of the day of the part of construction of the day of the day of the part of construction of the day of the day of the day of the day construction of the day of the day of the day of the day construction of the day of the day of the day of the day construction of the day of the day of the day of the day construction of the day of the day of the day of the day construction of the day of the day of the day of the day construction of the day of the day of the day of the day construction of the day of the day of the day of the day construction of the day of the day

Thackeray's Globules

IC 1396

Extinction in the inner Galactic Bulge:

comparing infrared colors and magnitudes observed for AGB and RGB stars with those predicted from stellar evolution models

Fig.3. Map of the extinction in the inner Galactic Bulge. The image grey scale represents an A_V range in magnitudes from 0 (white) to 35 (black). A coloured high resolution image can be found at http://www-denis.iap.fr/articles/extinction/

Struve (1928) Ca II K line in 1700 O-B3 stars

FIG. 6.—Relationship between intensity of detached K and distance

Red and blue light from nebulae

NGC 6559 and IC 1274-75

Interaction of stellar radiation with dusty gas clouds

NGC 6188 and NGC 6193

© Anglo-Australian Observatory

C Anglo-Australian Obs/Royal Obs. Edinburgh

Horsehead Nebula

Dust in galaxies

M 65

M 100

© Anglo-Australian Observatory

© Anglo-Australian Observatory

http://adc.gsfc.nasa.gov/mw/milkyway.html

Components of the ISM • Gas and dust: several phases with

- Gas and dust: several phases with different densities and temperatures
- Radiation fields: large local variations ionization, absorption
- Velocity fields: large scale flows as well as turbulent small scale motions
- Magnetic fields
- Cosmic rays: high energy particles
 All have comparable energy densities:
 ~ 1eV/cm3

Stru	uctures within	the Interstella	r Medium
	Density [cm ⁻³]	Temperature	Elements
Molecular clouds	> 100	10 – 20	H2, CO,
Diffuse clouds	10 – 1000	80	HI, other atoms, dust
Warm neutral medium	0.1 – 10	8000	HI, other atoms
Warm ionized medium	0.3 – 10	8000	HII, NII, SII,
Hot ionized medium	< 0.01	5x10 ⁵	HII, OVI, NV, SiIV
HII regions	10 - 10 ⁴	8000	HII, OII, OIII,
Ultracompact HII regions	10 ⁴ - 3x10 ⁵	8000	HII
Planetary nebulae	100 – 10 ⁴	10 ⁴	Hell, Oll, NelV,
Supernova remnants	> 1	10 ⁴ - 10 ⁷	HII, Hell, Oll, Olll, Sll,

from Allen's Astrophysical Quantities, p. 524

Structures within the Interstellar Medium

	Mass [M_sun]	Height [pc]	Observations
Molecular clouds	10 ⁹ ?	40 – 60	radio, near-IR, near-UV
Diffuse clouds	1.5x10 ⁹	100	radio, IR, optical
Warm neutral medium	1.5x10 ⁹	500	radio, optical
Warm ionized medium	10 ⁹	1000	optical, UV
Hot ionized medium	10 ⁸	3000	X-ray
HII regions	5x10 ⁷		optical, IR
Ultracompact HII regions			radio
Planetary nebulae			optical
Supernova remnants			radio, IR, optical, X-ray

Cartoon 2 Veneral picture of ISM H-atomic H2-molecular { clouds hotter & les dense interclouds PNe (JNR) HOCK; 1an-3 (1 ~100 K 11 ~100 K HI region medium ~10tk Atomic cloud 3.107 m-3 Him disk Intercloud medium ~ 8000 K 5 pC; 50 MO 3.105 m-3 Hot ~20K ~ (H2) component (partially) - ~10°K = ionzed) = 103 m3 _ thick dish ~10°m-3 \$0

20 pc

Characterstic densities Dust: \sim 1-10% of gas mass grain size: 0.1 - 0.001 mm, ~ 1 grain/10⁶ m³ $\sim 0.001 \, \text{M}_{\text{sun}}/\text{pc}^3$ Gas: ~ 10⁶ atoms/m³ ~ $0.01 M_{sun}/pc^{3}$ H: 90%, He: 10%, CNO: 0.1%

gas atoms/dust grains by number = 10¹²

Interstellar lines

Often many components towards distant stars in the galactic plane.

- •Na I D lines 589, 589.6 nm
- •Ca I 422.7 nm
- •Ca II H and K lines, 393.4, 396.8 nm
- •21 cm HI hfs line of ²S_{1/2} ground state.
- Recombination lines

lonized regions show recombination spectra e.g. H I n = 109 \Rightarrow n = 108 line at 5009 MHz etc. to H α and Ly α

Some important molecular lines

- OH 18 cm, 4 lines
- SiO 3, 45 mm
- SO 3.02 mm, ...
- CO 2.6, 1.3, 0.87 mm
- CN 2.6 mm
- CH 9.2 cm
- CS 6.1, 3.1, 2.0 mm
- H₂O 13.5, 1.63 mm
- H₂S 1.78 mm

- NH₂⁺ 3.22 mm
- C_2H 3.4 mm, 2 lines
- NH₃ 12.6 mm, 2 lines
- HCN 3.38 mm
- HNC 3.31 mm
- HCO⁺ 3.37 mm
- H₂CO 6.21, 2.07 cm
- CH₃OH 3.1 mm, 3 lines

The Cosmic (Hoyle et al '50 is) explosions milear processing stellar remnants Important: WD, NS, BH mab-los, ANe M + timescales metal-enriched eases star formation ISM; mixing; [4/H] 1 gas and dust bath (ISM)

NGC 3603

PRC99-20 • STScl OPO • June 1, 1999 Wolfgang Brandner (JPL/IPAC), Eva K. Grebel (Univ. Washington), You-Hua Chu (Univ. Illinois, Urbana-Champaign) and NASA

Intimate relation between gas, dust, and young stars.

M 17

Winds from high-mass stars

Wolf-Rayet star

Winds from low-mass stars

The Egg Nebula

HH 32

Hubble's variable nebula

NGC 2440

NGC 2346

Ring Nebula

Planetary nebulae

Hubble Heritage

PRC99-01 • Space Telescope Science Institute • Hubble Heritage Team (AURA/STScI/NASA)

Supernovae

How light echoes are formed. The gray areas are clouds of dust. As discussed more fully on page 25, echoes can come not only from material behind the supernova (A), but also from dust at the same distance (B) and even closer to us than the explosion (C, D, and E). Wherever these interstellar clouds intersect the inner, solid ellipse we will see a light echo two years after the supernova's maximum light. After three years the echo ellipse has expanded to the dashed line and the echoes have moved outwards, revealing dust cloud E. For clarity the clouds of reflective particles have been drawn much closer to the supernova than they are in reality, and the ellipses and relative location of the supernova are not to scale. The ellipses are actually extremely narrow.

Supernova remnants

Pencil Nebula

Vela SNR

radio

Crab Nebula

Local ISM (1500 light years)

see also talk by Jeff Linsky:

http://www.astro.uu.se/forskarutb/LISM/LISM.html

Milky Way disk from above

EM radiation - Spectroscopy

ISM: optically thin low density low particle density low pressure

• winds

explosions

We need:

- star formation
- 1. Radiative transfer
- 2. Atomic and molecular physics (micro-physics): cooling and heating
- 3. Gas physics and dynamics (macro-physics): motions of ISM gases, shock fronts, IF, stellar winds, and explosions