Review of radiative transfer and thermodynamics

- Radiative transfer
 - Process
 - Quantities $(I_{\nu}, j_{\nu}, \alpha_{\nu}, S_{\nu}, \tau_{\nu})$
 - Transport equation
 - Formal solution
 - Quantities derived from I_{ν}
- Local thermodynamical equilibrium (LTE)
 - Planck function
 - RT equation
 - Radio astronomy:
 R-J approximation, brightness temperature
- Measurement of interstellar lines
 - Brightness temp. \rightarrow cloud temperature
 - Equivalent width \rightarrow column density
- State of the gas
 - Speed distribution
 - Equation of state

Interstellar spectral lines

- Atoms and ions
 - Hydrogen 21 cm
 - Recombination lines
 - IR fine structure lines
 - Absorption lines
- Molecules
 - Classification
 - Diatomic molecules:
 - * Energy levels
 - * Spectra

Spectra of diatomic molecules

- Electronic transitions far-UV: H₂, CO, OH near-UV: CH, CH⁺, CN near-IR: C₂, CN
- Vibrational transitions
 Energy levels: E_v = (v + ¹/₂)hν_e (approximation)
 v = 0, 1, 2, ... vibrational quantum number;
 ν_e... vibrational frequency
 Selection rules: Δv = ±1 (fundamental transition)
 → ΔE = hν_e → one line at ν_e ≈ 10µm → infrared
 Δv = ±2, ±3, ... overtones
- Rotational transitions Energy levels: E_J = BJ(J + 1) J = 0, 1, 2, ... rotational quantum number B = ^{h²}/_{8π²mr²}; m̄ = ^{m_Am_B}/_{m_A+m_B} reduced mass Selection rules: ΔJ = ±1, no lines for symmetric molecules (e.g. H₂, O₂, CH₄) ΔE = hν = 2B(J + 1) → equidistant lines with separation 2B B ∝ ¹/_m → lines from lighter molecules at higher frequencies (shorter wavelengths) with larger separation between lines lines are at mm wavelengths (microwave) Example: CO λ_{1→0} = 2.6 mm, λ_{4→3} = λ_{1→0}/4 = 0.65 mm, λ_{10→9} = 0.26 mm

- Vibration-rotation transitions (within one electronic state) Combined energy levels and selection rules:
 - $$\begin{split} E_{vJ} &= (v + \frac{1}{2})h\nu_e + B_v J(J+1) \\ \Delta v &= \pm 1, \ \Delta J = \pm 1 \\ v &= 0 \rightarrow v = 1; \ B_1 < B_0 \text{ because } r_1 > r_0 \text{ and } B \propto \frac{1}{r^2} \\ &* J \rightarrow J+1; \ \Delta E = h\nu_e + 2B_1 + (3B_1 B_0)J + (B_1 B_0)J^2 \\ &\rightarrow \text{ for each } J \text{ a line at } \nu > \nu_e \rightarrow \text{ ``R branch''} \\ &\text{ frequency intervals } \Delta \nu \text{ decrease with } J \text{ until they become} \end{split}$$

0 at a maximum ν , then negative with $|\Delta \nu|$ increasing (\rightarrow "band head" at large J, e.g. J = 108 for CO, \rightarrow usually not visible)

- * $J \to J 1$: $\Delta E = h\nu_e (B_1 + B_0)J + (B_1 B_0)J^2$ \to for each J a line at $\nu < \nu_e \to$ "P branch" frequency intervals $|\Delta \nu|$ increase with J
- Intensity of rotational transitions determined by
 - 1. Transition dipole moment
 - 2. Populations of levels

calculated from Boltzmann statistics in LTE:

 $P_J = \frac{N_J}{N} = (2J+1) \exp(-BJ(J+1)/kT)/(kT/(sB))$ s...2 or 1 for symmetric or nonsymmetric molecules (assumption: only ground vibrational and electronic states are populated)

J at maximum population $\left(\frac{\mathrm{d}N_J}{\mathrm{d}J}=0\right)$: $J_{\max}\propto\sqrt{T}$ \rightarrow cloud temperatures can be measured from relative in-

tensities of rotational lines

Cooling in the ISM

- Criteria for efficient cooling
 - 1. High abundances of colliding particles Atoms: H, C, N, O; e⁻; Molecules: H₂ (electric quadrupole transitions), CO at \approx 10 K
 - 2. $E_{kin} \approx E_{exc}$

Transition	$\Delta E/k$
C II $({}^{2}P_{1/2} \rightarrow {}^{2}P_{3/2})$	92 K
Si II $({}^{2}P_{1/2} \rightarrow {}^{2}P_{3/2})$	$413~\mathrm{K}$
$O I ({}^{3}P_{2} \rightarrow {}^{3}P_{1,0})$	$228~\mathrm{K}$
	$326~\mathrm{K}$
$H_2 (\Delta J = \pm 2)$	$510 \mathrm{K}$
$CO (J = 0 \to 1)$	6 K

- 3. Large collisional excitation cross-section \rightarrow ions + e⁻
- 4. $A_{ul} > C_{ul}$ (strong transitions)
- 5. $\tau < 1 \rightarrow$ balance between 1. and 4. not satisfied for CO in dense clouds \rightarrow OH, H₂O, ¹³CO, C¹⁸O important coolants
- Cooling rate Λ

loss of thermal energy per unit volume and per second $\Lambda_{C^+} \propto n(C^+) \cdot n(e^-) \cdot \frac{1}{\sqrt{T}}$

• Cooling time t_c

time necessary for a significant change of temperature: ratio between internal energy of the gas per unit volume and cooling rate

Heating processes

- 1. Starlight
 - Photoionization of C, Si, Fe mean $\Delta Q \approx 2.1$ eV per ionization
 - Photodissociation of H_2 excitation into state with larger internuclear separation than ground state mean $\Delta Q \approx 0.4$ eV per dissociation
- 2. Cosmic rays (p + e⁻ with E \approx MeV) and soft X-rays (E \approx 1 keV)
 - Ionization of H by cosmic rays mean $\Delta Q \approx 3.4$ eV per ionization
 - Ionization of He by X-rays mean $\Delta Q \approx 6$ eV per ionization
 - Ionization of H_2 by CRs and X-rays $\Delta Q \approx 15$ eV per ionization for 2 MeV proton
- 3. Grains

photoelectric effect (UV photons) mean E_{kin} of liberated electron ≈ 5 eV important in diffuse neutral clouds

- 4. (Magneto)hydrodynamic heating
 - Stellar winds
 - Supernova explosions
 - Expansion of HII regions
 - Gravitational collapse of a cloud
 - Magnetic fields

Molecule formation

- Problems for direct formation $A + B \rightarrow AB + E$
 - Short collision contact time
 - Low transition probability
 - Very low third body collision probability
- Solutions
 - Involvement of ions
 - Dust grain catalysis (e.g. H₂)
 - Indirect formation by chemical reactions A + B \rightarrow C + D
- Ion-molecule reactions
 - Very rapid
 - Rates independent of temperature
 - Rates similar for different molecules
- Neutral exchange reactions
 - Lower rates than ion-molecule reactions
 - Rates depend on temperature
 - Rates similar for different molecules
- Reaction networks
 - Molecules formed and destroyed by above two types of reactions occuring successively, starting from H₂
 + destroyed by UV radiation
 - Set of differential equations for the change of the number densities of all molecules with time
 - Equilibrium abundances for $\frac{dn(M)}{dt} = 0$
 - Examples: Ionization level and number density of atomic hydrogen in dense clouds, CO formation

Interstellar dust

- Evidence for dust grains
 - Element abundances in the ISM
 - Extinction of starlight
 - Polarization of starlight
 - Scattered light
 - Spectral features from dust (absorption + emission)
 - Photoluminescence
- Formation of grains (condensation)
 - IS clouds (slow)
 - Atmospheres of cool giants (fast)
 - Envelopes of protostars
- Destruction of grains
 - Evaporation
 - Sputtering in shocks (e.g. SN blast wave)
- Grain properties
 - Temperature (10 ... 50 K, time dependent for small grains)
 - Charge
 - \ast 1 ... 100 e, depending on temperature, from collisions
 - * positive charge from photoelectric effect
- H_2 formation on grains (DW 4.6 and essay topic)

Radiatively excited regions

- Regions of high temperatures and low densities: Clouds of atomic H near hot stars
 - -~T up to 10000 K, $n \approx 10^8 10^9 \ {\rm m}^{-3}$
 - HII regions: clouds around stars
 - "diffuse ionized medium": lower densities, not clearly associated with stars
 - Observed spectra show emission lines:
 H Balmer, forbidden lines from O, N, S ions
- Hydrogen nebulae
 - Ionization of H by UV radiation from star
 - Recombination of p + e⁻
 - Ionization equilibrium
 - Degree of ionization (x): $x \approx 1$
 - Variation of x with distance from star: well defined edge
 - Strömgren radius $R_{\rm s}$
 - Temperature $T_{\rm e}$ from energy balance: $T_{\rm e} \approx T_{\rm eff}$
- Heavier elements in HII regions
 - Oxygen-line cooling
 - Ionization stratification
- Radio continuum spectrum
- Radio line spectrum (DW 5.4.2)
- Determination of electron temperature and density from observations