Dynamics of supernova ejecta

• Supernovae

- Core-collapse SNe
 - * supergiant with mass $\geq 8M_{\odot}$
 - * circumstellar material from stellar wind
 - * type II, Ib, Ic
 - * several solar masses of matter ejected
 - * compact remnant (neutron star)
- Thermonuclear explosion SNe
 - * white dwarf in close binary system
 - * no circumstellar material
 - * type Ia
 - $*\approx 1$ solar mass of matter ejected
 - * no compact remnant
- Ejection velocities $V_{\rm e}$ on the order of 10000 km s⁻¹
- Initial kinetic energy of ejecta $E_* \approx 10^{44}$ J total energy released by type II SNe ≈ 100 times larger (carried away by neutrinos)

• Phases of supernova remnant evolution

– Initial phase

- * free expansion phase
- \ast magnetohydrodynamic shock forms in ISM
- * mean free path of ejected protons $\approx 500 \text{ pc}$ \rightarrow weak magnetic field (a few μ G) necessary to prevent them from escaping
- * synchrotron radiation is observed at radio wavelengths
- * IS gas is compressed by shock "sweeping" through at speed = $V_{\rm e}$
- * shock radius $R = V_{e}t$ as long as mass of ejected material is larger than mass of swept-up IS gas
- * reverse shock forms in ejected material
- * phase ends when swept-up mass equals ejected mass

$$\frac{4\pi}{3}R_{\rm e}^3\rho_0 = M_{\rm e}$$

- * e.g. $n_0 = 10^6 \text{ m}^{-3}$
- * SN II: $M_{\rm e} = 4M_{\odot} \rightarrow R_{\rm e} = 3.4 \text{ pc}$ $V_{\rm e} = 5000 \text{ km s}^{-1} \rightarrow t_{\rm e} \approx 700 \text{ yr}$
- * SN Ia: $M_{\rm e} = 0.25 M_{\odot} \rightarrow R_{\rm e} = 1.3 \text{ pc}$ $V_{\rm e} = 20000 \text{ km s}^{-1} \rightarrow t_{\rm e} \approx 60 \text{ yr}$
- * material behind shock fronts heated to very high temperatures \rightarrow thermal bremsstrahlung observed at X-ray wavelengths

SN 1987A (Feb 23) velocity measurements (Hanuschik & Dachs 1987)

Flow pattern in initial phase of SNR evolution

– Adiabatic phase

- * reverse shock travels inwards and passes away
- * $M_{\rm e}$ < mass of swept-up IS gas \rightarrow ejected material negligible
- * expanding bubble of hot, shocked IS gas
- * initial shock velocity = $V_{\rm e}$
 - \rightarrow high post-shock temperature:

$$T_{\rm S} = \frac{3}{16} \frac{1/2 \cdot m_{\rm u} V_{\rm e}^2}{k} \approx 10^9 \,\,{\rm K} \quad \text{for } V_{\rm e} = 10000 \,\,{\rm km \,\, s^{-1}}$$

- \rightarrow low cooling rate \rightarrow adiabatic expansion
- * assume instantaneous release of a large amount of energy into surrounding gas of uniform density
- * detailed treatment in book of Sedov (1959, Similarity and Dimensional Methods in Mechanics, New York: Academic Press) gives self-similar solution for structure interior to shock
- * energy conservation
 - \rightarrow shock radius $R_{\rm S}$ and velocity $V_{\rm S}$ as a function of time
- * from Sedov-solution: $E_{\rm th} \approx 0.70 E_* \ (E_{\rm kin} \approx 0.30 E_*),$ $P_{\rm S} \approx 2.1 \langle P \rangle$ (average gas pressure of expanding bubble)
- * post-shock pressure for strong adiabatic shock and pressure of ideal monoatomic gas

$$P_{\rm S} = \frac{3}{4}\rho_0 V_s^2 \qquad \langle P \rangle = \frac{2}{3} \cdot \frac{E_{\rm th}}{4\pi R_{\rm S}^3/3}$$
$$\rightarrow V_{\rm S} = \frac{\mathrm{d}R_{\rm S}}{\mathrm{d}t} \approx \left(2.1\frac{2}{3\pi}\frac{0.7E_*}{\rho_0}\right)^{1/2} R_{\rm S}^{-3/2}$$

integration with lower limits = 0 for $R_{\rm S}$ and t

$$\rightarrow R_{\rm S} \approx \left(\frac{5}{2}\right)^{2/5} \left(\frac{E_*}{\pi\rho_0}\right)^{1/5} t^{2/5} \qquad \rightarrow V_{\rm S} \propto t^{-3/5}$$

– Radiative phase

* post-shock temperature decreases because of decreasing velocity:

$$T_{\rm S} = \frac{3}{32} \frac{m_{\rm u} V_{\rm S}^2}{k} \approx 10^6 \,\,{\rm K}$$
 for $V_{\rm S} = V_0 = 300 \,\,{\rm km \,\, s^{-1}}$

- \rightarrow higher cooling rate, increases with temperature
- * cooling further enhanced by increasing density in thin shell behind shock
 - \rightarrow catastrophic cooling phase
- * isothermal phase, "snowplough" phase
- * $R_0 \approx 20 \text{ pc}$, $t_0 \approx 25000 \text{ yr}$, $M_0 \approx 700 M_{\odot}$ for $E_* = 10^{44} \text{ J}$ and $n_0 = 10^6 \text{ m}^{-3}$
- * momentum conservation of shell, assume all mass interior to shock to be in shell \rightarrow shell/shock radius $R_{\rm S}$ and velocity $V_{\rm S}$ as a function of time
- * main difference to wind model: no continuous supply of energy

$$\frac{4}{3}\pi R_{\rm S}^3 \rho_0 V_{\rm S} = \frac{4}{3}\pi R_0^3 \rho_0 V_0$$
$$R_{\rm S}^3 dR_{\rm S} = R_0^3 V_0 dt$$

integration with lower limits $= R_0$ and t_0

$$\rightarrow \frac{1}{4} (R_{\rm S}^4 - R_0^4) = R_0^3 V_0(t - t_0)$$

$$R_{\rm S} = R_0 \left(1 + 4 \frac{V_0}{R_0} (t - t_0) \right)^{1/4}$$

$$V_{\rm S} = V_0 \left(1 + 4 \frac{V_0}{R_0} (t - t_0) \right)^{-3/4}$$

$$R_{\rm S} \propto t^{1/4}, \quad V_{\rm S} \propto t^{-3/4} \quad \text{for } t \gg \frac{R_0}{V_0}$$

- End of the life of supernova remnants dispersion into ISM when $V_{\rm S} = V_{\rm f} \approx 10 \text{ km s}^{-1}$ \approx random speed of ISM clouds $\rightarrow t_{\rm f} \approx 10^6 \text{ yr}, R_{\rm f} \approx 60 \text{ pc}, M_{\rm f} \approx 10^4 M_{\odot}$

- Efficiency of energy conversion

* fraction g of initial energy E_* converted into kinetic energy of the ISM

$$g = \frac{(1/2)M_{\rm f}V_{\rm f}^2}{E_*} \approx 0.02$$

 \rightarrow higher than for conversion of stellar UV energy but lower than for wind model

– Hot medium

- * remnant filled with hot medium at end of adiabatic phase
- * cools adiabatically during the isothermal phase
- * effects of this medium on dynamics of isothermal phase neglected
- * still rather hot $(10^5 10^6 \text{ K})$ when SNR disperses
 - \rightarrow also distributed into ISM
 - \rightarrow hot phase of ISM, also called "coronal gas"
- * low density (< 10^4 m^{-3}) \rightarrow large scale height
- * observed in soft X-rays and in UV spectra of hot stars

Dynamics of diffuse neutral clouds

• Properties of neutral clouds

- observed in 21 cm line, and Na I D or Ca II K lines
- consist mainly of HI at $T\approx 70~{\rm K}$ \rightarrow sound speed $\lesssim 1~{\rm km~s^{-1}}$
- space velocity $u_{\rm c} \approx 10 \ {\rm km \ s^{-1}}$
- density $n_{\rm H} \approx 3 \cdot 10^7 \text{ m}^{-3}$
- cloud radius $R_{\rm c}$ on average 2.5 pc \rightarrow mass $M_{\rm c} \approx 50 M_{\odot}$
- number of clouds along a line of sight $N_{\rm L}$ on average 6 $\rm kpc^{-1}$
- number of clouds in galactic disk

$$V_{\text{disk}} = R_{\text{disk}}^2 \pi h_{\text{disk}} \approx (10 \text{kpc})^2 \pi 250 \text{pc} \approx 7.9 \cdot 10^{10} \text{pc}^3 \approx 2.35 \cdot 10^{60} \text{m}^3$$

 $N_{\text{c}} = N_{\text{L}} \frac{V_{\text{disk}}}{L R_{\text{c}}^2 \pi} \approx 2.4 \cdot 10^7$

- fraction of disk volume occupied by clouds

$$\alpha = \frac{N_{\rm c} V_{\rm c}}{V_{\rm disk}} \approx 0.02$$

• Cloud-cloud collisions

- supersonic \rightarrow shock waves \rightarrow dissipation of kinetic energy
- collision rate

$$\dot{\mathcal{N}}_{
m coll} pprox rac{N_{
m c}^2 u_{
m c} R_{
m c}^2 \pi}{V_{
m disk}}$$

 energy dissipated in one collision is kinetic energy of both clouds

$$E_{\rm coll} \approx M_{\rm c} u_{\rm c}^2$$

– energy loss rate per unit volume

$$\mathcal{L} \approx \frac{\dot{\mathcal{N}}_{\text{coll}} E_{\text{coll}}}{V_{\text{disk}}} \approx \frac{N_{\text{c}}^2 R_{\text{c}}^2 \pi M_{\text{c}} u_{\text{c}}^3}{V_{\text{disk}}^2} \approx 2 \cdot 10^{-28} \text{Jm}^{-3} \text{s}^{-1}$$

- system of clouds in steady state requires resupply of kinetic energy
 - \rightarrow energy gain from supernova explosions

with $E_* = 10^{44}$ J and conversion efficiency g

- galactic supernova rate ≈ 3 per century (see review article by van den Bergh & Tammann, 1991, ARA&A 29, 363) → $t_{\rm ex} \approx 30$ yr
- energy gain rate per unit volume

$$\mathcal{G} \approx g \frac{E_*}{V_{\text{disk}} t_{\text{ex}}} \approx g \cdot 4.5 \cdot 10^{-26} \text{Jm}^{-3} \text{s}^{-1}$$
$$g = 0.02 \rightarrow \mathcal{G} \approx 1.4 \cdot 10^{-27} \text{Jm}^{-3} \text{s}^{-1}$$

Pressure equilibrium in the ISM

• Five main ISM phases

Phase	$n [{\rm m}^{-3}]$	$T [\mathrm{K}]$	$P = nkT \; [\mathrm{N \; m^{-2}}]$
1. Coronal gas	$< 10^{4}$	$5 \cdot 10^5$	$< 10^{-13}$
2. HII regions	$\gtrsim 10^8$	10^{4}	$\gtrsim 10^{-11}$
3. Warm intercloud medium	10^{6}	8000	10^{-13}
4. Diffuse neutral clouds	$10^7 - 10^9$	70	$10^{-14} - 10^{-12}$
5. Molecular clouds	$> 10^8$	20	$> 10^{-14}$

- pressure equilibrium between 1, 3, 4, partly 5
- expected when considering sound crossing times $t_{\rm c} = L/c_{\rm s}$
- diffuse neutral cloud: $t_{\rm c} \approx 5 \cdot 10^6 \text{ yr}$
- coronal gas: $c_{\rm s} \approx 90 \text{ km s}^{-1}$, scale height $\approx 300 \text{ pc}$ $\rightarrow t_{\rm c} \approx 6 \cdot 10^6 \text{ yr}$
- warm intercloud medium: $c_{\rm s} \approx 10 \text{ km s}^{-1}$ \rightarrow sound waves travel distances of many times the diameter of neutral clouds

Superbubbles

- Groups of massive stars with range of masses
 → stellar winds + supernovae distributed over time
- Supernovae dominate the dynamics of the region
- Act similar to a wind with $\frac{1}{2}\dot{M}_*V_* = E_*/t_{\rm ex}$

$$R(t) = \left(\frac{125}{154\pi}\right)^{1/5} \left(\frac{E_*}{t_{ex}n_0m_H}\right)^{1/5} t^{3/5}$$

- $E_* = 10^{44} \text{ J}, t_{\text{ex}} = 3 \cdot 10^5 \text{ yr}, n_0 = 10^6 \text{ m}^{-3}$
- Lifetime of lowest mass (8 M_{\odot}) star: $t \approx 10^8$ yr $\rightarrow R(10^8 \text{yr}) \approx 1000 \text{ pc}, R(10^7 \text{yr}) \approx 280 \text{ pc}$
- Evolution of superbubbles influenced by variation of density with distance z from galactic plane

$$n(z) = n_0 \exp(-\frac{|z|}{h_0}) \qquad h_0 \approx 100 \text{ pc}$$
$$\rightarrow R = R(t, z), \dot{R} = \dot{R}(t, z)$$

• $|z| \uparrow \rightarrow n \downarrow \rightarrow R, \dot{R} \uparrow$

