Winds from massive stars

• Wind properties from spectral lines

- Review article: Kudritzki & Puls 2000,
 Annual Review of Astronomy and Astrophysics, Vol. 38, p. 613
- P-Cygni profiles:
 blue absorption trough and red emission peak
- Pure emission profiles
- UV resonance lines of CIV, NV, SiIV, OVI, \ldots
- $H\alpha$ line
- IR lines: sample different depths of the wind than UV and optical lines
- \rightarrow Determine wind parameters
 - * maximum wind velocity V_* typically 2000 km s⁻¹ cf. solar wind mean velocity ≈ 500 km s⁻¹, low mass stars ≈ 10 km s⁻¹
 - * shape of velocity law V(R) described by parameter β
 - * mass loss rate \dot{M}_{*} on the order of $10^{-6} M_{\odot} \text{ yr}^{-1}$ cf. solar type stars $\approx 10^{-14} M_{\odot} \text{ yr}^{-1}$, low mass stars $\approx 10^{-7} M_{\odot} \text{ yr}^{-1}$

P Cygni profile formation

from Joachim Puls http://www.usm.uni-muenchen.de/people/puls/windsfromhotstars/windframes.html

• Flow pattern around massive stars

- Star surrounded by HII region
- Wind gas meets ionized IS gas with velocity $V_* \approx 2000 \text{ km s}^{-1}$
- Sound speed $c_i \approx 10 \text{ km s}^{-1} \rightarrow \text{supersonic flow}$ \rightarrow shock wave S_2 in IS gas
- Shocked IS gas acts like an obstacle to wind gas \rightarrow shock wave S_1 in wind gas in opposite direction
- \rightarrow Flow pattern with 4 main regions (see figure)

– Region A

- \ast unshocked wind gas with velocity V_{\ast}
- * enters shock S_1 , where it is slowed down and heated

– Region B

- * shocked wind gas
- * shock velocity $V_{\rm S} = V_*$
 - highly supersonic \rightarrow strong shock
- * high post-shock temperature:

$$T_{\rm S} = \frac{3}{16} \frac{1/2 \cdot m_{\rm u} V_*^2}{k} \approx 4.5 \cdot 10^7 \text{ K}$$

* almost no cooling, because

low cooling rate at this temperature

and long cooling time $t_{\rm c} \propto V_*^3$

- \rightarrow adiabatic shock
- \rightarrow compression by factor 4 (only)
- \rightarrow finite thickness
- * slowly expanding bubble of hot gas with high sound speed \rightarrow short sound crossing time
 - \rightarrow no pressure gradient

- Region C

- \ast shocked IS gas
- * shock velocity $V_{\rm S} = V_0 \ll V_*$
- * lower post-shock temperature \rightarrow higher cooling rate \rightarrow effective cooling \rightarrow isothermal shock \rightarrow
 - compression by large factor
 - \rightarrow very thin shell (mass conservation)
 - \rightarrow short sound crossing time
 - \rightarrow constant pressure

- Surface between B and C: "contact discontinuity"

- \ast separates shocked wind gas and shocked IS gas
- * temperature + density change discontinuously, pressure \mathcal{P} does not change

– Region D

- * surrounding unshocked interstellar gas with density ρ_0
- \ast assumed to be at rest with respect to shock fronts

\bullet Simple model for the evolution of the flow pattern

- Region C is described by a single radius R \rightarrow represents the outer boundary of the hot expanding bubble (region B)
- Conservation of momentum in region B

$$\frac{\mathrm{d}}{\mathrm{d}t}(M(R)\dot{R}) = 4\pi R^2 \mathcal{P}$$

– Conservation of energy in region B

$$\frac{\mathrm{d}}{\mathrm{d}t}(E_{\mathrm{th}}(R)) = \frac{1}{2}\dot{M}_*V_*^2 - \mathcal{P}\frac{\mathrm{d}}{\mathrm{d}t}(\mathrm{Volume}(R))$$

Combination of the two equations gives equation of motion

 $\rightarrow 3^{\rm rd}$ order differential equation for size of bubble R as a function of time

– Choose a solution in form of power law

$$R = A \cdot t^{\alpha}$$
$$\alpha = \frac{3}{5} \qquad A \propto \left(\frac{1}{2}\frac{\dot{M}_* V_*^2}{\rho_0}\right)^{\frac{1}{5}}$$

 \rightarrow With this model:

calculate the fraction of energy in the wind converted to kinetic energy of the IS gas $\rightarrow \approx 20\% \rightarrow$ much higher conversion efficiency than for converting stellar UV energy to gas energy

– Using ionization balance in the shell and the isothermal jump condition for shock S_2 : $\frac{\rho_{\rm C}}{\rho_0} = \frac{\dot{R}^2}{c_{\rm i}^2}$ calculate maximum radius at which hot wind bubble stays within HII region

 \rightarrow for typical values of star, wind and cloud parameters $R_{\rm max}\approx 2~{\rm pc}$

• Departures from spherical symmetry

- Usual case
- Simple model cannot be used
- Need numerical simulations