next up previous contents index
Next: 3 Program Files, Installation, Up: 2.2 A collection of Previous: 2.2.4 Derived thermodynamic coefficients   Contents   Index


2.2.5 Ideal gas with constant specific heats (polytropic gas)

In this case, we obtain much simpler relations:

\begin{displaymath}
e = c_v T =\frac{p}{\rho} \frac{1}{\gamma-1}
\end{displaymath} (70)


\begin{displaymath}
h = c_p T =\frac{p}{\rho} \frac{\gamma}{\gamma-1}
\end{displaymath} (71)


\begin{displaymath}
s = c_v \left\{\ln p - \gamma \ln \rho \right\} + const.
\end{displaymath} (72)


\begin{displaymath}
\gamma \equiv \frac{c_p}{c_v} = \Gamma_1 = \Gamma_2 = \Gamma_3 = const.
\end{displaymath} (73)


\begin{displaymath}
c_p - c_v = \frac{p}{\rho T} \equiv \mathcal{R}
\end{displaymath} (74)


\begin{displaymath}
c_v = \mathcal{R} \frac{1}{\gamma-1} = c_v^\prime
\end{displaymath} (75)


\begin{displaymath}
c_p = \mathcal{R} \frac{\gamma}{\gamma-1} = c_p^\prime
\end{displaymath} (76)


\begin{displaymath}
\chi_{T} = \chi_{\rho} = \delta = 1
\end{displaymath} (77)


\begin{displaymath}
c_s \equiv \sqrt{\left(\frac{\partial p}{\partial \rho}\right)_{s}} = \sqrt{\gamma \frac{p}{\rho}}
\end{displaymath} (78)


\begin{displaymath}
c_T \equiv \sqrt{\left(\frac{\partial p}{\partial \rho}\right)_{T}} = \sqrt{\frac{p}{\rho}}
\end{displaymath} (79)


next up previous contents index
Next: 3 Program Files, Installation, Up: 2.2 A collection of Previous: 2.2.4 Derived thermodynamic coefficients   Contents   Index