next up previous contents index

2.1.2 Linear advection as special case: total energy

For the total energy we get

$\displaystyle 0$ $\textstyle =$ $\displaystyle \frac{\partial \rho e_{\rm ik}}{\partial t} + \frac{\partial \rho e_{\rm ik}\; v_{}}{\partial x}$ (56)
  $\textstyle =$ $\displaystyle \frac{\partial }{\partial t} \left( \rho e_{\rm i}+ \frac{1}{2} \...
...rtial x} \left( \rho e_{\rm i}  v_{} + \frac{1}{2} \rho v_{}^2   v_{} \right)$ (57)
  $\textstyle =$ $\displaystyle \frac{1}{2} v_{}^2 \left( \frac{\partial \rho}{\partial t} + v_{}...
...\rm i}}{\partial t} + \frac{\partial \rho e_{\rm i}\; v_{}}{\partial x} \right)$ (58)
  $\textstyle =$ $\displaystyle \frac{\partial \rho e_{\rm i}}{\partial t} + v_{}   \frac{\partial \rho e_{\rm i}}{\partial x}
\enspace .$ (59)