next up previous contents index

2.1.3 Linear advection as special case

Finally, we get for the pressure \bgroup\color{DEFcolor}$ P\left( \rho e_{\rm i}, \rho \right)$\egroup

$\displaystyle \frac{\partial P}{\partial t}$ $\textstyle =$ $\displaystyle { \left. \frac{\partial P}{\partial \rho e_{\rm i}}\right\vert _{...
...}{\partial \rho}\right\vert _{\rho e_{\rm i}}} \frac{\partial \rho}{\partial t}$ (60)
  $\textstyle =$ $\displaystyle { \left. \frac{\partial P}{\partial \rho e_{\rm i}}\right\vert _{...
...\vert _{\rho e_{\rm i}}} \left( - v_{} \frac{\partial \rho}{\partial x} \right)$ (61)
  $\textstyle =$ $\displaystyle - v_{} \frac{\partial P}{\partial x}
= 0
\enspace .$ (62)
Thus, \bgroup\color{DEFcolor}$v_{}$\egroup and \bgroup\color{DEFcolor}$P$\egroup are constant in space and time. The passive advection of \bgroup\color{DEFcolor}$\rho$\egroup and \bgroup\color{DEFcolor}$\rho e_{\rm i}$\egroup is described by the linear advection equation
\begin{displaymath}
\frac{\partial \rho}{\partial t} + v_{}   \frac{\partial \rho}{\partial x} = 0
\end{displaymath} (63)
with \bgroup\color{DEFcolor}$v_{}=\mathrm{const}$\egroup.