next up previous contents index

2.1.4 Analytic solution of the linear advection equation

For initial condition

\begin{displaymath}
\rho \left( x, t_0 \right) = \rho_0 \left( x \right)
\end{displaymath} (64)
the advection equation (63) has the general solution
\begin{displaymath}
\tilde{\rho} \left( x, t \right) = \rho_0 \left( x - v_{} \left[ t - t_0 \right] \right)
\enspace .
\end{displaymath} (65)
Proof by checking: it fulfils the initial condition and
\begin{displaymath}
\frac{\partial \tilde{\rho}}{\partial t} + v_{}   \frac{\p...
... \frac{\mathrm{d} \rho_0}{\mathrm{d} x}   1
=
0
\enspace .
\end{displaymath} (66)