next up previous contents index

2.2.5 Parabolic PDE: discretization

For discrete time-steps on a spatial grid

\begin{displaymath}
t^n = \Delta t  n + t_0
\end{displaymath} (81)
\begin{displaymath}
x_i = \Delta x  i + x_0
\end{displaymath} (82)
the discretization in time and space
\begin{displaymath}
\frac{\partial y}{\partial t}    \rightarrow    \frac{y^{n+1}_i-y^n_i}{\Delta t}
\end{displaymath} (83)
\begin{displaymath}
\frac{\partial^2 y}{{\partial x}^2}    \rightarrow    \frac{y^n_{i+1}-2y^n_i+y^n_{i-1}}{\Delta x^2}
\end{displaymath} (84)
gives the explicit Euler scheme
\begin{displaymath}
y^{n+1}_i = y^n_i + \frac{\Delta t}{\Delta x^2}   K   \left( y^n_{i+1}-2y^n_i+y^n_{i-1} \right)
\enspace .
\end{displaymath} (85)