next up previous contents index

2.5.9 Linear stability analysis of donor cell (FTBS) scheme

Applying ansatz (135) to the donor cell scheme Eq. (108) gives, using Eq. (138),

\begin{displaymath}
A = 1
-
\alpha
\left(
1
-
e^{ jk \Delta x}
\right)
...
...\cos k \Delta x\right)
+
j\alpha \sin k \Delta x
\enspace ,
\end{displaymath} (142)
\begin{displaymath}
\mbox{abs} \! \left( A \right)
=
[ 1
-
2
\underbrace{\...
...- \cos k \Delta x\right)}_{\ge 0}
]^{\frac{1}{2}}
\enspace ,
\end{displaymath} (143)
\begin{displaymath}
{\color{HIGH1color}
\mbox{abs} \! \left( A \right)
\le
1...
...\mbox{for} \enspace \alpha \in \left[ 0, 1 \right]
\enspace .
\end{displaymath} (144)
The donor cell scheme is stable if the CFL condition is fulfilled,
\begin{displaymath}
{\color{HIGH2color}
\frac{\Delta t}{\Delta x}   v_{} \in \left[ 0, 1 \right]
}
\enspace .
\end{displaymath} (145)
Note: \bgroup\color{DEFcolor}$v_{} \ge 0$\egroup is required (for \bgroup\color{DEFcolor}$v_{} \le 0$\egroup use FTFS).

Note: \bgroup\color{DEFcolor}$\mbox{abs} \! \left( A \right) < 1$\egroup is possible: numerical viscosity

Note: \bgroup\color{DEFcolor}$\mbox{phase} \! \left( A \right) \neq v_{} k \Delta t$\egroup: dispersion