next up previous contents index

3.1.1 Viscous and inviscid Burgers' equation

Viscous Burgers' equation:

\begin{displaymath}
\frac{\partial v_{}}{\partial t} + \frac{\partial \frac{1}{...
...rtial x} = \epsilon   \frac{\partial^2 v_{}}{{\partial x}^2}
\end{displaymath} (158)
inviscid Burgers' equation in conservation form (with flux \bgroup\color{DEFcolor}$\frac{1}{2} v_{}^2$\egroup)
\begin{displaymath}
\frac{\partial v_{}}{\partial t} + \frac{\partial \frac{1}{2} v_{}^2}{\partial x} = 0
\enspace ,
\end{displaymath} (159)
quasi-linear form
\begin{displaymath}
\frac{\partial v_{}}{\partial t} + v_{}   \frac{\partial v_{}}{\partial x} = 0
\enspace ,
\end{displaymath} (160)
and integral form
\begin{displaymath}
\int_{x_0}^{x_1}
\left[ v_{} \! \left( x , t_1 \right)
-
...
...frac{1}{2} v_{}^2 \! \left( x_0 , t \right)
\right]
dt
=
0
\end{displaymath} (161)