next up previous contents index

3.2.12 Second-order extension of flux formula

Resolving Eq. (192) for the upwind flux that we need as flux (184) for the CIR scheme gives

\begin{displaymath}
f_{i+\frac{1}{2}}^n
=
f \! \left( q_{{ i_{\rm up}}_{i+\fr...
...}^n}{2} \right)
}_{\mbox{linear(ized) advection}}
\enspace .
\end{displaymath} (194)
Remember: This is exactly the simple upwind (CIR) flux.

However, the second term looks like linear advection and suggests to apply a higher-order (eg. slope-limiter) scheme to the localized advection problem for

\begin{displaymath}
q'_j = q_j - \frac{q_i + q_{i+1}}{2}
\enspace \enspace \en...
...\! - \! 1,  
i,  
i \! + \! 1,  
i \! + \! 2
\enspace .
\end{displaymath} (195)