next up previous contents index

2.5.5 Linear stability analysis of naive FTCS scheme

Applying ansatz (123) to the naive scheme Eq. (92) gives

\begin{displaymath}
A   e^{- ji k \Delta x} = e^{- ji k \Delta x}
-
\frac{\D...
...
e^{- j\left ( i - 1 \right) k \Delta x}
\right)
\enspace .
\end{displaymath} (124)
Multiplying with \bgroup\color{DEFcolor}$e^{ji k \Delta x}$\egroup and using the Courant number
\begin{displaymath}
\alpha := \frac{\Delta t}{\Delta x}   v_{}
\end{displaymath} (125)
we get
\begin{displaymath}
A = 1
-
\alpha   \frac{1}{2}
\left(
e^{- jk \Delta x}
...
...Delta x}
\right)
= 1
+
j\alpha \sin k \Delta x
\enspace ,
\end{displaymath} (126)
\begin{displaymath}
\mbox{abs} \! \left( A \right)
=
\left( 1 + \alpha^2 \sin...
...( 1 + \alpha^2 \sin^2 \pi/N \right)^{-\frac{1}{2}}
\enspace ,
\end{displaymath} (127)
\begin{displaymath}
{\color{HIGH1color}
\mbox{abs} \! \left( A \right)
>
1
...
...for} \enspace N > 1 \enspace , \enspace \alpha > 0
\enspace .
\end{displaymath} (128)
All waves escept the ones with smallest wavenumber grow exponentially in time:

The scheme is unconditionally unstable, independent of the time-step.