 
 
 
 
 
 
 
 
 
 
Applying ansatz (123) to the donor cell scheme Eq. (103)
gives, using Eq. (125),
|  | (129) | 
 
| ![\begin{displaymath}
\mbox{abs} \! \left( A \right)
=
[ 1
-
2
\underbrace{\...
... \cos k \Delta x\right)}_{\ge 0}
]^{-\frac{1}{2}}
\enspace ,
\end{displaymath}](img286.png) | (130) | 
 
| ![\begin{displaymath}
{\color{HIGH1color}
\mbox{abs} \! \left( A \right)
\le
1...
...\mbox{for} \enspace \alpha \in \left[ 0, 1 \right]
\enspace .
\end{displaymath}](img287.png) | (131) | 
 
The donor cell scheme is
stable
if the Courant-Friedrichs-Levy condition
(
CFL condition)
is fulfilled,
| ![\begin{displaymath}
{\color{HIGH2color}
\frac{\Delta t}{\Delta x}   v_{} \in \left[ 0, 1 \right]
}
\enspace .
\end{displaymath}](img288.png) | (132) | 
 
Note: 
 is required (for
 is required (for 
 use FTFS).
 use FTFS).
Note: 
 is possible:
numerical viscosity
 is possible:
numerical viscosity
Note: 
 :
dispersion
:
dispersion