next up previous contents index

2.2.8 Linear advection equation: discretization

The prototype of a hyperbolic PDE, the linear advection equation (63), can be discretized for discrete time-steps on a spatial grid

\begin{displaymath}
t^n = \Delta t  n + t_0
\end{displaymath} (88)
\begin{displaymath}
x_i = \Delta x  i + x_0
\end{displaymath} (89)
by replacing
\begin{displaymath}
\frac{\partial \rho}{\partial t}    \rightarrow    \frac{\rho^{n+1}_i-\rho^n_i}{\Delta t}
\end{displaymath} (90)
\begin{displaymath}
\frac{\partial \rho}{\partial x}    \rightarrow    \frac{\rho^n_{i+1}-\rho^n_{i-1}}{2 \Delta x}
\enspace .
\end{displaymath} (91)
The result is the explicit Euler scheme (``naive'' scheme, FTCS scheme)
\begin{displaymath}
\rho^{n+1}_i = \rho^n_i - \frac{\Delta t}{2\Delta x}   v_{}   \left( \rho^n_{i+1}-\rho^n_{i-1} \right)
\enspace .
\end{displaymath} (92)
This looks quite similar to the discretization of the heat equation (85).