next up previous contents index

3.1.4 Shock speed I

Figure 25: Jump across shock.
$\textstyle \parbox{3.0cm}{\makebox[3.0cm]{}}$\includegraphics[width=8.0cm]{images/pde1d_jump.ps} $\textstyle \parbox{3.0cm}{\makebox[3.0cm]{}}$
A shock with speed \bgroup\color{DEFcolor}$s$\egroup travels over an infinitesimal time \bgroup\color{DEFcolor}$\Delta t$\egroup an infinitesimal distance
\begin{displaymath}
\Delta x=s   \Delta t
\end{displaymath} (164)
(see Fig. 25). Integration of the PDE
\begin{displaymath}
\frac{\partial q}{\partial t} + \frac{\partial f \! \left( q \right)}{\partial x} = 0
\enspace ,
\end{displaymath} (165)
over \bgroup\color{DEFcolor}$\Delta t$\egroup and \bgroup\color{DEFcolor}$\Delta x$\egroup results in
\begin{displaymath}
\int_{x}^{x + \Delta x}
\left[ q \! \left( x , t + \Delta ...
...\! \left( q \! \left( x , t \right) \right)
\right]
dt
=
0
\end{displaymath} (166)