next up previous contents index

3.1.5 Shock speed II

During this time \bgroup\color{DEFcolor}$\Delta t$\egroup the states \bgroup\color{DEFcolor}$q_\mathrm{l}$\egroup, \bgroup\color{DEFcolor}$q_\mathrm{r}$\egroup and fluxes \bgroup\color{DEFcolor}$f \! \left( q_\mathrm{l} \right)$\egroup, \bgroup\color{DEFcolor}$f \! \left( q_\mathrm{r} \right)$\egroup on the left and right do not change (much) and we get

\begin{displaymath}
\Delta x  q_\mathrm{l}
-
\Delta x  q_\mathrm{r}
+
\D...
...thrm{l} \right)
=
O \! \left( \Delta t^2 \right)
\enspace .
\end{displaymath} (167)
For \bgroup\color{DEFcolor}$\Delta x=s   \Delta t$\egroup and \bgroup\color{DEFcolor}$\Delta t\rightarrow 0$\egroup we get the Rankine-Hugoniot jump condition
\begin{displaymath}
s   \left( q_\mathrm{r}
-
q_\mathrm{l}
\right)
=
f \! \left( q_\mathrm{r} \right)
-
f \! \left( q_\mathrm{l} \right)
\end{displaymath} (168)
which gives for the shock speed in general
\begin{displaymath}
s
=
\frac{f \! \left( q_\mathrm{r} \right)
-
f \! \left( q_\mathrm{l} \right)}
{q_\mathrm{r}
-
q_\mathrm{l}}
\end{displaymath} (169)
and for Burgers' equation
\begin{displaymath}
s
=
\frac{\frac{1}{2} v_{\mathrm{r}}^2
-
\frac{1}{2} v_...
... \left( v_{\mathrm{r}}
+
v_{\mathrm{l}}
\right)
\enspace .
\end{displaymath} (170)