next up previous contents index

4.4.1 Linearized flux

A linearized Riemann solver uses a linearization of the vector flux \bgroup\color{DEFcolor}$\ensuremath{\mathchoice{\mbox{\boldmath$\displaystyle F$...
...ox{\boldmath$\scriptstyle F$}}
{\mbox{\boldmath$\scriptscriptstyle F$}}}$\egroup in Eq. (41) around reference value \bgroup\color{DEFcolor}$\ensuremath{\mathchoice{\mbox{\boldmath$\displaystyle q$...
...\scriptstyle q$}}
{\mbox{\boldmath$\scriptscriptstyle q$}}}_\mathrm{ref}$\egroup to bring it into a form similar to the scalar Eq. (194),

\begin{displaymath}
\ensuremath{\mathchoice{\mbox{\boldmath$\displaystyle F$}}
...
...ptscriptstyle q$}}}_\mathrm{ref} \right)^2 \right)
\enspace .
\end{displaymath} (203)
Dropping the 2nd order term and choosing \bgroup\color{DEFcolor}$x_\mathrm{ref} = x_{i+\frac{1}{2}}$\egroup we get
\begin{displaymath}
\ensuremath{\mathchoice{\mbox{\boldmath$\displaystyle q$}}
...
...x{\boldmath$\scriptscriptstyle q$}}}_{i+1} \right)
\enspace ,
\end{displaymath} (204)
\begin{displaymath}
\ensuremath{\mathchoice{\mbox{\boldmath$\displaystyle F$}}
...
...ath$\scriptscriptstyle q$}}}_{i+1} \right) \right)
\enspace .
\end{displaymath} (205)
We remember from Sect. 1.5.3 that for the Jacobian
\begin{displaymath}
\bar{\bar{\ensuremath{\mathsf{A}}}}_{i+\frac{1}{2}}
:=
\f...
...{\mbox{\boldmath$\scriptscriptstyle q$}}}_\mathrm{ref} \right)
\end{displaymath} (206)
there is a matrix \bgroup\color{DEFcolor}$\bar{\bar{\ensuremath{\mathsf{Q}}}}_{i+\frac{1}{2}}$\egroup that brings it into diagonal form
\begin{displaymath}
\bar{\bar{\ensuremath{\mathsf{\Lambda}}}}_{i+\frac{1}{2}}
...
...bar{\ensuremath{\mathsf{Q}}}}_{i+\frac{1}{2}}^{-1}
\enspace .
\end{displaymath} (207)